Strength Design

• TMS Chap 9

Frank Lloyd Wright's iconic Ennis House sells for a record-setting \$18 million

Photo: Mary E. Nichols, via Realtor.com

Slide 1 of 35

University of Michigan, TCAUP

Ennis House - Frank Loyd Wright

Masonry

After an incredible publicity blitz and well over a year on the market, Frank Lloyd Wright's world-renowned Ennis House tucked into the foothills of Los Feliz [...] — has sold for \$18 million to an as-yet-unidentified buyer. That number, while significantly below the \$23 million ask, ranks it as the priciest Wrightdesigned home ever sold, easily eclipsing the previous high-water mark set by the Storer House in nearby Hollywood Hills, which was purchased in 2013 for \$6.8 million [...] — Variety

Ennis House – Frank Loyd Wright

University of Michigan, TCAUP

Ennis House - Frank Loyd Wright

Design Options

Empirical

• TMS 402 Appendix A

Allowable Stress Design (ASD)

• TMS 402 Chap. 8

Strength Design

• TMS 402 Chap. 9

Design Options

Empirical

TMS 402 Appendix A

Allowable Stress Design (ASD)

• TMS 402 Chap. 8

Strength Design

- TMS 402 Chap. 9
- IBC Section 2108
 - mostly references TMS 402
 - steel development length capped at 72 d_b
 - Mechanical and welded splices

University of Michigan, TCAUP

Masonry

Slide 7 of 35

TMS 402

Development

- 9.1 General
- 9.1.1 Scope
- 9.1.2 Required strength
- 9.1.3 Design strength
- 9.1.4 Strength-reduction factors
- 9.1.5 Deformation requirements
- 9.1.6 Anchor bolts embedded in grout
- 9.1.7 Shear strength in Multiwythe elements
- 9.1.8 Nominal bearing strength
- 9.1.9 Material properties

TMS 402 Chapter 9

Strength Design Method

University of Michigan, TCAUP

Strength Required by Loads < Strength of Masonry

Masonry

γPu > øPn

- 1.2 D + 1.6 Lr + 0.5(Lr or S)
- 1.2 D + 1.6(Lr or S) + (L or 0.5W)
- 1.2 D + 1.0W + L + 0.5(Lr or S)
- 0.9D + 1.0W
- 1.2D + Ev + Eh + L + 0.2S
- 0.9D Ev + Eh

(Equation 9-11) for h/r < 99

$$P_n = 0.80 \left\{ 0.80 A_n f'_m \left[1 - \left(\frac{h}{140r}\right)^2 \right] \right\}$$

$$P_n = 0.80 \left[0.80 A_n f'_m \left(\frac{70 r}{h} \right)^2 \right]$$

9.1.4 Strength-reduction factors, ø

Action	Reinforced Masonry	Unreinforced Masonry
combinations of flexure and axial load	0.90	0.60
shear	0.8	30
bearing	0.0	50
anchor bolts: pryout	0.!	50
anchor bolts: controlled by anchor bolt steel	0.9	90
anchor bolts: pullout	0.6	65

Masonry

Slide 11 of 35

TMS 402 Chapter 9 Strength Design $Pu \le Pn$

Section 9.2 Unreinforced (plain) masonry

9.2.1 Scope

- 9.2.2 Design criteria (uncracked)
- 9.2.3 Design assumptions
- strain proportional to distance from N.A.
- flexural tension proportional to strain
- flexural comp. + axial comp. proportional to strain
- stresses in reinforcement are not accounted for

9.2.4 Nominal flexural and axial strength

- compressive stress ≤ 0.80 f'm
- tensile stress \leq fr
- 9.2.5 Axial tension
- tension resistance shall be neglected
- 9.2.6 Nominal shear strength (3.8 Anv √f'm or 300 Anv)

$$f_t = \frac{Mc}{I} - \frac{P}{A}$$

(Equation 9-11) for h/r < 99
$$P_n = 0.80 \left\{ 0.80 A_n f'_m \left[1 - \left(\frac{h}{140r}\right)^2 \right] \right\}$$

(Equation 9-12) for h/r > 99

$$P_n = 0.80 \left[0.80 A_n f'_m \left(\frac{70 r}{h} \right)^2 \right]$$

Table 9.1.9.2 Modulus of Rupture

Masonry Type	Mortar Type					
	Por cemen mortar	tland t/lime or cement	Masonry	Cement		
	M or S	Ν	M or S	Ν		
Normal to Bed Joints Solid Units	133	100	80	51		
Hollow Units ¹ Ungrouted Fully Grouted	84 163	64 158	51 153	31 145		
Parallel to bed joints in running bond Solid Units Hollow Units	267	200	160	100		
Ungrouted and partially grouted Fully grouted	167 267	127 200	100 160	64 100		
Parallel to bed joints not laid in running bond Continuous grout section parallel to bed joints	335	335	335	335		
Other	0	0	0	0		
University of Michigan, TCAUP Masonr	/		s	lide 13 of 35		

Reinforced Masonry Analysis - procedure

for axial compression using TMS 402 (2016) Strength Design (LRFD) – **non-reinforced**

Given: applied load, geometry, material Find: axial compressive load capacity, Pn

- 1. Determine the masonry strength, f'm, based on unit strength, fu, and mortar type
- 2. Find the net area, A_n , and r (see TEK 14-1B)
- 3. Calculate h/r
- 4. Choose the axial strength equation, Pn: If $h/_r < 99$ use TMS 402 eq.9-11 If $h/_r > 99$ use TMS 402 eq.9-12
- 6. Check that øPn is greater than Pu.

(Equation 9-11) for h/r < 99

$$P_n = 0.80 \left\{ 0.80 A_n f'_m \left[1 - \left(\frac{h}{140r}\right)^2 \right] \right\}$$

(Equation 9-12) for h/r > 99

$$P_n = 0.80 \left[0.80 A_n f'_m \left(\frac{70 r}{h} \right)^2 \right]$$

Masonry Strength

TMS 602 – Table 2 – s18

Masonry strength, f'm, based on unit strength,

fu, and mortar type M, S or N

Concrete Masonry

Table 2 — C	ompress	sive	strengtl	n of	mas	sonry	base	d on	tł	ne com	pressi	ive
st	trength onstruct	of o	concrete	maso	onry	units	and	type	of	mortar	used	in

Net area compressive strength of	Net area compressive strength of ASTM C90 concrete masonry <u>units</u> , psi (MPa)				
concrete masonry, psi $(MPa)^1 \qquad f'm$	Type M or S mortar	Type N mortar			
1.750 (12.07)		2,000 (13.79)			
2,000 (13,79)	2,000 (13.79)	2,650 (18.27)			
2.250 (15.51)	2,600 (17.93)	3,400 (23.44)			
2,200 (17,24)	3,250 (22.41)	4,350 (28.96)			
2,750 (18.96)	3,900 (26.89)				
3,000 (20.69)	4,500 (31.03)				

¹ For units of less than 4 in. (102 mm) nominal height, use 85 percent of the values listed.

```
University of Michigan, TCAUP
```

Structures II

Slide 15 of 35

Reinforced Masonry Analysis

for axial compression using TMS 402 (2016) Strength Design – **non-reinforced**

Section Properties of Concrete Masonry Walls TEK 14 - 1B

Reinforced Masonry Analysis

for axial compression using TMS 402 (2016) Strength Design – **non-reinforced**

Section Properties of Concrete Masonry Walls TEK 14 - 1B

	Grout	Mortar	Net cros	s-sectional p	propertiesA	
Unit	spacing (in.)	bedding	A_n (in. ² /ft)	I_n (in. ⁴ /ft)	S_n (in. ³ /ft)	
A Hollow	No grout	Face shell	30.0	308.7	81.0	Ī
B Hollow	No grout	Full	41.5	334.0	87.6	
)/E 00% sol	id/solidly grouted	Full	91.5	443.3	116.3	
C Hollow	16	Face shell	62.0	378.6	99.3	
Hollow	24	Face shell	51.3	355.3	93.2	
Hollow	32	Face shell	46.0	343.7	90.1	
Hollow	40	Face shell	42.8	336.7	88.3	
Hollow	48	Face shell	40.7	332.0	87.1	
Hollow	72	Face shell	37.1	324.3	85.0	
Hollow	96	Face shell	35.3	320.4	84.0	
Hollow	120	Face shell	34.3	318.0	83.4	

Table 3—8-inch (203-mm) Single Wythe Walls, 1¹/₄ in. (32 mm) Face Shells (standard)

Reinforced Masonry Analysis

for axial compression using TMS 402 (2016) Strength Design – **non-reinforced**

Reinforced Masonry Analysis

for axial compression using TMS 402 (2016) Strength Design – **non-reinforced**

2. Find the net area, A_n , and radius of gyration, r_{avg} (see TEK 14-1B)

		Grout	Mortar	Net cros	ss-sectional p	propertiesA	Avera	ige cross-sec	tional proper	ties ^B
	Unit	spacing (in.)	bedding	A_n (in. ² /ft)	I_{n} (in. ⁴ /ft)	S_n (in. ³ /ft)	A_{avg} (in. ² /ft)	Iavg (in.4/ft)	S_{avg} (in. ³ /ft)	r_{ang} (in.)
	Hollow	No grout	Face shell	30.0	308.7	81.0	41.5	334.0	87.6	2.84
	Hollow	No grout	Full	41.5	334.0	87.6	41.5	334.0	87.6	2.84
	100% sol	id/solidly grouted	Full	91.5	443.3	116.3	91.5	443.3	116.3	2.20
	Hollow	16	Face shell	62.0	378.6	99.3	65.8	387.1	101.5	2.43
	Hollow	24	Face shell	(51.3)	355.3	93.2	57.7	369.4	96.9	2.53
	Hollow	32	Face shell	46.0	343.7	90.1	53.7	360.5	94.6	2.59
	Hollow	40	Face shell	42.8	336.7	88.3	51.2	355.2	93.2	2.63
	Hollow	48	Face shell	40.7	332.0	87.1	49.6	351.7	92.2	2.66
	Hollow	72	Face shell	37.1	324.3	85.0	46.9	345.8	90.7	2.71
	Hollow	96	Face shell	35.3	320.4	84.0	45.6	342.8	89.9	2.74
	Hollow	120	Face shell	34.3	318.0	83.4	44.8	341.0	89.5	2.76
			3b: Vertical	Section Pr	operties (M	asonry Spar	nning Horiz	ontally)		
	Hollow	No grout	Face shell	30.0	308.7	81.0	40.5	330.1	86.6	2.86
	Hollow	No grout	Full	30.0	308.7	81.0	41.5	334.0	87.6	2.84
	100% sol	id/solidly grouted	Full	91.5	443.3	116.3	91.5	443.3	116.3	2.20
	Hollow	16	Face shell	60.8	376.0	98.6	71.2	397.4	104.2	2.36
	Hollow	24	Face shell	50.5	353.6	92.7	61.0	374.9	98.3	2.48
	Hollow	32	Face shell	45.4	342.4	89.8	55.8	363.7	95.4	2.55
	Hollow	40	Face shell	42.3	335.6	88.0	52.8	357.0	93.6	2.60
	Hollow	48	Face shell	40.3	331.1	86.9	50.7	352.5	92.5	2.64
	Hollow	96	Face shell	35.1	319.9	83.9	45.6	341.3	89.5	2.74
	Hollow	120	Face shell	34.1	317.7	83.3	44.6	339.0	88.9	2.76
	Ō	Table 3—8-	inch (20	3-mm) Si	ngle WytH (standa	ne Walls, ard)	1% in.	(32 mm)	Face Shel	ls
versity of Mi	chigan, TCA	NUP			Structure	es II				Slide 19 of 3

Reinforced Masonry Analysis

for axial compression using TMS 402 (2016) Strength Design – **non-reinforced**

3. Calculate h/r3. Calculate h/rA_n = 51.3 in² $F_{ovg} = 2.53$ in $h/r = \frac{12}{2.53}$ i

Interaction Diagram

Moment Magnification

Design for magnified moment: $M_u = \psi M_{u,0}$

- Can take $\psi = 1$ if $h/r \le 45$
- Can take $\psi = 1$ if $45 < h/r \le 60$ and nominal strength reduced by 10%

Masonry

Slide 23 of 35

Unreinforced Masonry Wall example

Given: h = 12 ft t = 8 in hollow CMU, fu = 2000 psi type S mortar, face shell bedding, no grout

Loading: D = 1 k/ft + selfweight of 30 psf Lr = 0.5 k/ft (w/ e=3 in.)W = 24 psf (+ or -)

 $\frac{\text{Load Combinations}}{1.4\text{D}}$ $1.2\text{D} + 1.6\text{L}_{r}$ $1.2\text{D} + 1.0\text{W} + 0.5\text{L}_{r}$ $0.9\text{D} + 1.0\text{W} \quad \text{sc}$

Unreinforced Masonry Wall

example

Section Properties of Concrete Masonry Walls TEK 14 - 1B

Unreinforced Masonry Wall example

	Grout	Mortar	Net cros	s-sectional p	propertiesA	Avera	ge cross-sec	tional proper	ties ^B
Unit	spacing (in.)	bedding	A_n (in. ² /ft)	I. (in.4/ft)	S_n (in. ³ /ft)	A_{avg} (in. ² /ft)	Iavg (in.4/ft)	S_{avg} (in. ³ /ft)	rave (in.
Hollow	No grout	Face shell	30.0	308.7	81.0	41.5	334.0	87.6	2.84
Hollow	No grout	Full	41.5	334.0	87.6	41.5	334.0	87.6	2.84
100% so	lid/solidly grouted	Full	91.5	443.3	116.3	91.5	443.3	116.3	2.20
Hollow	16	Face shell	62.0	378.6	99.3	65.8	387.1	101.5	2.43
Hollow	24	Face shell	51.3	355.3	93.2	57.7	369.4	96.9	2.53
Hollow	32	Face shell	46.0	343.7	90.1	53.7	360.5	94.6	2.59
Hollow	40	Face shell	42.8	336.7	88.3	51.2	355.2	93.2	2.63
Hollow	48	Face shell	40.7	332.0	87.1	49.6	351.7	92.2	2.66
Hollow	72	Face shell	37.1	324.3	85.0	46.9	345.8	90.7	2.71
Hollow	96	Face shell	35.3	320.4	84.0	45.6	342.8	89.9	2.74
Hollow	120	Face shell	34.3	318.0	83.4	44.8	341.0	89.5	2.76
		3b: Vertica	Section Pro	operties (Ma	asonry Spar	ning Horizo	ontally)		
Hollow	No grout	Face shell	30.0	308.7	81.0	40.5	330.1	86.6	2.86
Hollow	No grout	Full	30.0	308.7	81.0	41.5	334.0	87.6	2.84
100% so	lid/solidly grouted	Full	91.5	443.3	116.3	91.5	443.3	116.3	2.20
Hollow	16	Face shell	60.8	376.0	98.6	71.2	397.4	104.2	2.36
Hollow	24	Face shell	50.5	353.6	92.7	61.0	374.9	98.3	2.48
Hollow	32	Face shell	45.4	342.4	89.8	55.8	363.7	95.4	2.55
Hollow	40	Face shell	42.3	335.6	88.0	52.8	357.0	93.6	2.60
Hollow	48	Face shell	40.3	331.1	86.9	50.7	352.5	92.5	2.64
Hollow	96	Face shell	35.1	319.9	83.9	45.6	341.3	89.5	2.74
Hollow	120	Face shell	34.1	317.7	83.3	44.6	339.0	88.9	2.76

University of Michigan, TCAUP

Masonry

Slide 27 of 35

Unreinforced Masonry Wall example

Load Combinations

 $\begin{array}{l} 1.4D \\ 1.2D + 1.6L_r \\ 1.2D + 1.0W + 0.5L_r \\ 0.9D + 1.0W \end{array}$

Determine the controlling load combination

- B. $1.2D + 1.0W + 0.5L_r$ Wind suction (compression on inside)
- C. 0.9D + 1.0W Wind pressure (compression on outside)
- D. 0.9D + 1.0W

Wind suction (compression on inside)

Load Combination	Tensile Stress (psi)
1.2D + 1.0W + 0.5L _r wind pressure	?
1.2D + 1.0W + $0.5L_r$ wind suction	?
0.9D + 1.0W wind pressure	?
0.9D + 1.0W wind suction	?

Unreinforced Masonry Wall example

Load Combinations

 $\begin{array}{l} 1.4D \\ 1.2D + 1.6L_r \\ 1.2D + 1.0W + 0.5L_r \\ 0.9D + 1.0W \end{array}$

Determine the controlling load combination

A. $1.2D + 1.0W + 0.5L_r$ V	Wind pressure ((compression on	outside)
-----------------------------	-----------------	-----------------	----------

- B. $1.2D + 1.0W + 0.5L_r$ Wind suction (compression on inside)
- C. 0.9D + 1.0W Wind pressure (compression on outside)
- D. 0.9D + 1.0W Wind suction (compression on inside)

	Load Combination	Tensile Stress (psi)
	1.2D + 1.0W + 0.5L _r wind pressure	5.9 psi
	1.2D + 1.0W + 0.5L _r wind suction	40.4 psi
	0.9D + 1.0W wind pressure	12.4 psi
X	0.9D + 1.0W wind suction	47.6 psi
Universi	ity of Michigan, TCAUP Masonry	Slide 29

Unreinforced Masonry Wall example

Given: h = 12 ft t = 8 in hollow CMU, fu = 2000 psi

type S mortar, face shell bedding, no grout

Loading:

D = 1 k/ft + selfweight of 30 psfLr = 0.5 k/ft (w/ e=3 in.) W = 24 psf (+ or -)

Unreinforced Masonry Wall example

Unreinforced Masonry Wall example

0.9D + 1.0W - Wind suction (compression on inside face of wall)

Location of max
moment, x
$$x = \frac{h}{2} - \frac{M_{uf}}{w_u h} = \frac{144in}{2} - \frac{2700 \frac{lb \cdot in}{ft}}{24 \frac{lb}{ft^2} (12ft)} = 62.6in.$$
Factored axial
load, P_u

$$P_u = 0.9 \left(\underbrace{1000 \frac{lb}{ft} + 30 \frac{lb}{ft^2} \left(\frac{62.6in}{12in./ft} \right)}_{W_u f} \right) = \underbrace{1041 \frac{lb}{ft}}_{ft}$$

$$\underbrace{E_{CCLJTRAC}}_{Muf}$$
Muf = $P_{uf}e = 0.9 \left(\underbrace{1000 \frac{lb}{ft}}_{ft} \right) (3.0in.) = \underbrace{2700 \frac{lb \cdot in}{ft}}_{ft}$
Maximum combined
moment, $M_{u,0}$

$$M_{u,0} = \frac{M_{uf}}{2} + \frac{W_u h^2}{8} + \frac{M_{uf}^2}{2W_u h^2}$$

$$= \frac{2700\frac{lb \cdot in.}{ft}}{2} + \frac{24\frac{lb}{ft^2}(12ft)^2 \left(12\frac{in.}{ft}\right)}{8} + \frac{\left(2700\frac{lb \cdot in.}{ft}\right)^2}{2\left(24\frac{lb}{ft^2}\right)(12ft)^2 \left(12\frac{in.}{ft}\right)}$$

= 1350 + 5184 + 88 = $\underbrace{6622}_{ft} \underbrace{lb \cdot in.}_{ft}$
Masonry Slide 32 of 35

.

Unrei 0.9D	nforced Masonry Wall example + 1.0W - Wind suction (compression on inside face of wall)	
Wł	nat to do to make wall work? (short of reinforcing wall)	
1.	Increase wall size, say to 12 in. (Sn = 139.6 in³/ft). Maximu tensile stress is 12.7 psi.	m
2.	Grout wall. (w-wall = 75 psf; An = 91.5 in ² /ft; Sn = 116.3 in ³ / f_r = 163 psi) Maximum tensile stress of 45.3 psi is less than design stress of 0.6(163) = 97.8 psi	ft;
3.	Use Portland cement/lime or mortar cement (modulus of rup is 84 psi). Maximum tensile stress of 47.2 psi is less than de stress of 0.6(94)=50.4 psi	oture esign
4.	Use pilasters	
Universit	y of Michigan, TCAUP Masonry	Slide 35 of 35