Architecture 504 Masonry Structures

Strength Design

• TMS Chap 9

Frank Lloyd Wright's iconic Ennis House sells for a record-setting \$18 million

By Alexander Walter Oct 17, '19 3:31 PM EST

Follow 🕝

Photo: Mary E. Nichols, via Realtor.com

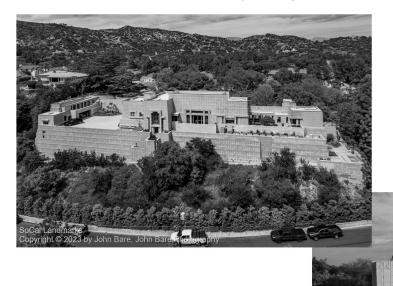

After an incredible publicity blitz and well over a year on the market, Frank Lloyd Wright's world-renowned Ennis House tucked into the foothills of Los Feliz [...] - has sold for \$18 million to an as-yet-unidentified buyer. That number, while significantly below the \$23 million ask, ranks it as the priciest Wrightdesigned home ever sold, easily eclipsing the previous high-water mark set by the Storer House in nearby Hollywood Hills, which was purchased in 2013 for \$6.8 million [...] - Variety

University of Michigan, TCAUP

Masonry

Slide 1 of 35

Ennis House - Frank Loyd Wright



University of Michigan, TCAUP Masonry Slide 2 of 35

Ennis House – Frank Loyd Wright

University of Michigan, TCAUP Masonry Slide 3 of 35

Ennis House – Frank Loyd Wright

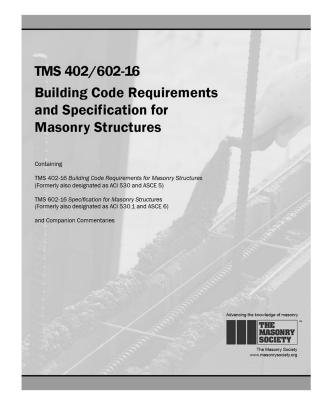
University of Michigan, TCAUP Masonry Slide 4 of 35

Ennis House - Frank Loyd Wright

University of Michigan, TCAUP Masonry Slide 5 of 35

Design Options

Empirical


TMS 402 Appendix A

Allowable Stress Design (ASD)

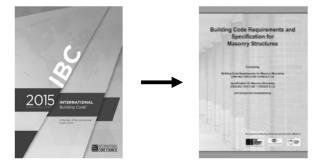
TMS 402 Chap. 8

Strength Design

• TMS 402 Chap. 9

Design Options

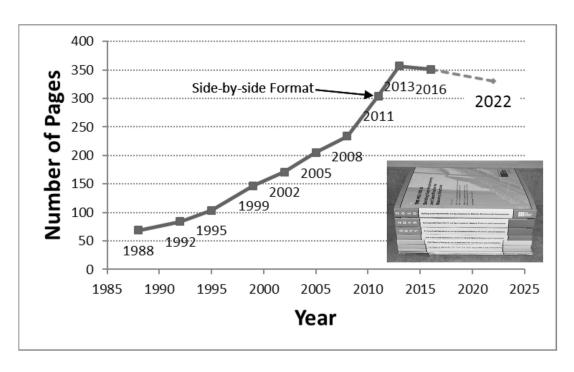
Empirical

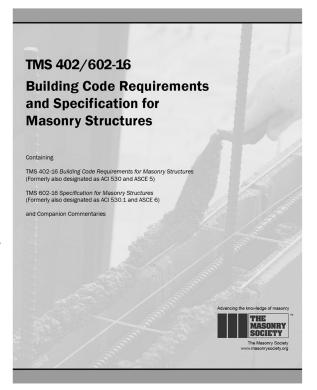

TMS 402 Appendix A

Allowable Stress Design (ASD)

• TMS 402 Chap. 8

Strength Design


- TMS 402 Chap. 9
- IBC Section 2108
 - mostly references TMS 402
 - steel development length capped at 72 d_b
 - Mechanical and welded splices


University of Michigan, TCAUP Masonry Slide 7 of 35

TMS 402

Development

- 9.1 General
- 9.1.1 Scope
- 9.1.2 Required strength
- 9.1.3 Design strength
- 9.1.4 Strength-reduction factors
- 9.1.5 Deformation requirements
- 9.1.6 Anchor bolts embedded in grout
- 9.1.7 Shear strength in Multiwythe elements
- 9.1.8 Nominal bearing strength
- 9.1.9 Material properties

University of Michigan, TCAUP

Masonry

Slide 9 of 35

TMS 402 Chapter 9

Strength Design Method

Strength Required by Loads < Strength of Masonry

$$\gamma$$
 Pu > \emptyset Pn

- 1.4 D
- 1.2 D + 1.6 Lr + 0.5(Lr or S)
- 1.2 D + 1.6(Lr or S) + (L or 0.5W)
- 1.2 D + 1.0W + L + 0.5(Lr or S)
- 0.9D + 1.0W
- 1.2D + Ev + Eh + L + 0.2S
- 0.9D Ev + Eh

(Equation 9-11) for h/r < 99

$$P_n = 0.80 \left\{ 0.80 A_n f_m' \left[1 - \left(\frac{h}{140r} \right)^2 \right] \right\}$$

(Equation 9-12) for h/r > 99

$$P_n = 0.80 \left[0.80 A_n f_m' \left(\frac{70 \, r}{h} \right)^2 \right]$$

9.1.4 Strength-reduction factors, ø

Action	Reinforced Masonry	Unreinforced Masonry	
combinations of flexure and axial load	0.90	0.60	
shear	0.0	30	
bearing	0.60		
anchor bolts: pryout	0.50		
anchor bolts: controlled by anchor bolt steel	0.90		
anchor bolts: pullout	0.0	65	

University of Michigan, TCAUP

Masonry

Slide 11 of 35

TMS 402 Chapter 9 Strength Design $Pu \leq Pn$

Section 9.2 Unreinforced (plain) masonry

- 9.2.1 Scope
- 9.2.2 Design criteria (uncracked)
- 9.2.3 Design assumptions
- strain proportional to distance from N.A.
- flexural tension proportional to strain
- flexural comp. + axial comp. proportional to strain
- · stresses in reinforcement are not accounted for

9.2.4 Nominal flexural and axial strength

- compressive stress ≤ 0.80 f'm
- tensile stress ≤ fr

9.2.5 Axial tension

- tension resistance shall be neglected
- 9.2.6 Nominal shear strength (3.8 Anv √f'm or 300 Anv)

$$f_t = \frac{Mc}{I} - \frac{P}{A}$$

(Equation 9-11) for h/r < 99

$$P_n = 0.80 \left\{ 0.80 A_n f_m' \left[1 - \left(\frac{h}{140r} \right)^2 \right] \right\}$$

(Equation 9-12) for h/r > 99

$$P_n = 0.80 \left[0.80 A_n f_m' \left(\frac{70 \, r}{h} \right)^2 \right]$$

University of Michigan, TCAUP Masonry Slide 12 of 35

Table 9.1.9.2 Modulus of Rupture

Masonry Type	Mortar Type				
	Portland cement/lime or mortar cement		Masonry Cement		
	M or S	N	M or S	N	
Normal to Bed Joints Solid Units Hollow Units ¹	133	100	80	51	
Ungrouted Fully Grouted	84 163	64 158	51 153	31 145	
Parallel to bed joints in running bond Solid Units Hollow Units	267	200	160	100	
Ungrouted and partially grouted Fully grouted	167 267	127 200	100 160	64 100	
Parallel to bed joints not laid in running bond Continuous grout section parallel to bed joints	335	335	335	335	
Other	0	0	0	0	

University of Michigan, TCAUP

Masonry

Slide 13 of 35

Reinforced Masonry Analysis - procedure

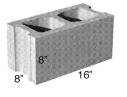
for axial compression using TMS 402 (2016) Strength Design (LRFD) – **non-reinforced**

Given: applied load, geometry, material Find: axial compressive load capacity, Pn

- 1. Determine the masonry strength, f'm, based on unit strength, fu, and mortar type
- 2. Find the net area, An, and r (see TEK 14-1B)
- 3. Calculate h/r
- 4. Choose the axial strength equation, Pn: If h/r < 99 use TMS 402 eq.9-11 If h/r > 99 use TMS 402 eq.9-12
- 5. Calculate øPn where ø for axial force = 0.60
- 6. Check that øPn is greater than Pu.

(Equation 9-11) for h/r < 99

$$P_n = 0.80 \left\{ 0.80 A_n f_m' \left[1 - \left(\frac{h}{140r} \right)^2 \right] \right\}$$


(Equation 9-12) for h/r > 99

$$P_n = 0.80 \left[0.80 A_n f_m' \left(\frac{70 r}{h} \right)^2 \right]$$

Masonry Strength

TMS 602 - Table 2 - s18

Masonry strength, f'm, based on unit strength, fu, and mortar type M, S or N

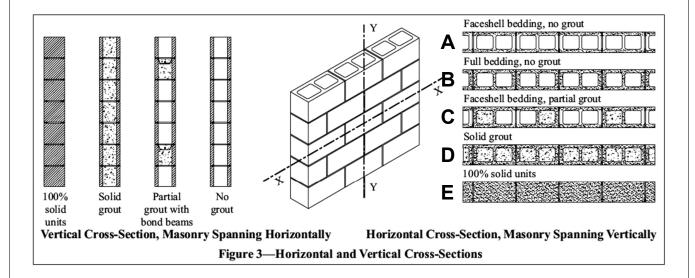
Concrete Masonry

Table 2 — Compressive strength of masonry based on the compressive strength of concrete masonry units and type of mortar used in construction

Net area compressive strength of	Net area compressive strength of ASTM C90 concrete masonry units, psi (MPa)		
concrete masonry, psi (MPa) ¹	Type M or S mortar	Type N mortar	
1,750 (12.07)		2,000 (13.79)	
2,000 (13.79)	2,000 (13.79)	2,650 (18.27)	
2,250 (15.51)	2,600 (17.93)	3,400 (23.44)	
2,500 (17.24)	3,250 (22.41)	4,350 (28.96)	
2,750 (18.96)	3,900 (26.89)		
3,000 (20.69)	4,500 (31.03)		

¹ For units of less than 4 in. (102 mm) nominal height, use 85 percent of the values listed.

University of Michigan, TCAUP


Structures II

Slide 15 of 35

Reinforced Masonry Analysis

for axial compression using TMS 402 (2016) Strength Design – **non-reinforced**

Section Properties of Concrete Masonry Walls TEK 14 – 1B

Reinforced Masonry Analysis

for axial compression using TMS 402 (2016) Strength Design – **non-reinforced**

Section Properties of Concrete Masonry Walls TEK 14 – 1B

Table 3—8-inch (203-mm) Single Wythe Walls, 1¹/₄ in. (32 mm) Face Shells (standard)

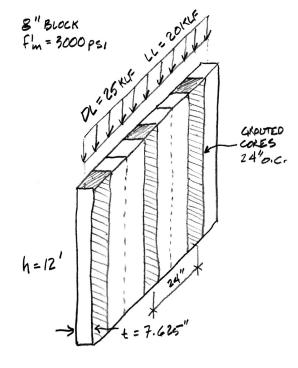
3a: I	Iorizontal Section	Properties (Masonry Sp	anning Ver	tically)
	Grout	Mortar	Net cros	s-sectional p	properties ^A
Unit	spacing (in.)	bedding	A_n (in.2/ft)	I_n (in.4/ft)	S_n (in. 3 /ft)
Hollow	No grout	Face shell	30.0	308.7	81.0
Hollow	No grout	Full	41.5	334.0	87.6
∃ 00% s	olid/solidly grouted	Full	91.5	443.3	116.3
Hollow	16	Face shell	62.0	378.6	99.3
Hollow	24	Face shell	51.3	355.3	93.2
Hollow	32	Face shell	46.0	343.7	90.1
Hollow	40	Face shell	42.8	336.7	88.3
Hollow	48	Face shell	40.7	332.0	87.1
Hollow	72	Face shell	37.1	324.3	85.0
Hollow	96	Face shell	35.3	320.4	84.0
Hollow	120	Face shell	34.3	318.0	83.4

University of Michigan, TCAUP Structures II Slide 17 of 35

Reinforced Masonry Analysis

for axial compression using TMS 402 (2016) Strength Design – **non-reinforced**

Example Problem


Given: geometry: 8" block, grouted 24" o.c. material: f'm = 3000 psi

Find: check pass/fail for the given loading

 Determine the masonry strength, f'm, based on unit strength, fu, and mortar type. (given f'm = 3000 psi)

Faceshell bedding, partial grout

Reinforced Masonry Analysis

for axial compression using TMS 402 (2016) Strength Design – **non-reinforced**

2. Find the net area, A_n , and radius of gyration, r_{avg} (see TEK 14-1B)

		3a: Horizon	tal Section	Properties (Masonry S _l	panning Ver	tically)		
	Grout	Mortar	Net cross-sectional properties ^A		Average cross-sectional proper			ties ^B	
Unit	spacing (in.)	bedding	A_n (in.2/ft)	I_n (in.4/ft)	S_n (in. 3 /ft)	Aavg (in.2/ft)	Iavg (in.4/ft)	S_{avg} (in.3/ft)	r_{avg} (in.)
Hollow	No grout	Face shell	30.0	308.7	81.0	41.5	334.0	87.6	2.84
Hollow	No grout	Full	41.5	334.0	87.6	41.5	334.0	87.6	2.84
100% so	lid/solidly grouted	Full	91.5	443.3	116.3	91.5	443.3	116.3	2.20
Hollow	16	Face shell	62.0	378.6	99.3	65.8	387.1	101.5	2.43
Hollow	24	Face shell	(51.3)	355.3	93.2	57.7	369.4	96.9	2.53
Hollow	32	Face shell	46.0	343.7	90.1	53.7	360.5	94.6	2.59
Hollow	40	Face shell	42.8	336.7	88.3	51.2	355.2	93.2	2.63
Hollow	48	Face shell	40.7	332.0	87.1	49.6	351.7	92.2	2.66
Hollow	72	Face shell	37.1	324.3	85.0	46.9	345.8	90.7	2.71
Hollow	96	Face shell	35.3	320.4	84.0	45.6	342.8	89.9	2.74
Hollow	120	Face shell	34.3	318.0	83.4	44.8	341.0	89.5	2.76
		3b: Vertical	Section Pro	operties (Ma	asonry Spar	nning Horizo	ontally)		
Hollow	No grout	Face shell	30.0	308.7	81.0	40.5	330.1	86.6	2.86
Hollow	No grout	Full	30.0	308.7	81.0	41.5	334.0	87.6	2.84
100% so	lid/solidly grouted	Full	91.5	443.3	116.3	91.5	443.3	116.3	2.20
Hollow	16	Face shell	60.8	376.0	98.6	71.2	397.4	104.2	2.36
Hollow	24	Face shell	50.5	353.6	92.7	61.0	374.9	98.3	2.48
Hollow	32	Face shell	45.4	342.4	89.8	55.8	363.7	95.4	2.55
Hollow	40	Face shell	42.3	335.6	88.0	52.8	357.0	93.6	2.60
Hollow	48	Face shell	40.3	331.1	86.9	50.7	352.5	92.5	2.64
Hollow	96	Face shell	35.1	319.9	83.9	45.6	341.3	89.5	2.74
Hollow	120	Face shell	34.1	317.7	83.3	44.6	339.0	88.9	2.76

Table 3-8-inch (203-mm) Single Wythe Walls, 1¼ in. (32 mm) Face Shells (standard)

University of Michigan, TCAUP

Structures II

Slide 19 of 35

Reinforced Masonry Analysis

for axial compression using TMS 402 (2016) Strength Design – **non-reinforced**

3. Calculate
$$h/r$$

4. Choose the axial strength equation, Pn: If h/r < 99 use TMS 402 eq.9-11 If h/r > 99 use TMS 402 eq.9-12

(Equation 9-11) for h/r < 99
$$P_n = 0.80 \left\{ 0.80 A_n f_m' \left[1 - \left(\frac{h}{140r} \right)^2 \right] \right\}$$

University of Michigan, TCAUP

Structures II

Slide 20 of 35

Reinforced Masonry Analysis

for axial compression using TMS 402 (2016) Strength Design – non-reinforced

(Equation 9-11) for h/r < 99

$$P_n = 0.80 \left\{ 0.80 A_n f_m' \left[1 - \left(\frac{h}{140r} \right)^2 \right] \right\}$$

5. Calculate øPn where ø for axial force = 0.60 (unreinforced)

$$P_{n} = 0.8 \left[0.8 \, A_{n} \, f_{m}^{1} \left(1 - \frac{h}{140 \, r} \right)^{2} \right]$$

$$P_{n} = 0.8 \left[0.8 \left(51.3 \, \frac{h^{2}}{FT} \right) \left(3 \, \text{KsI} \right) \left(1 - \left(\frac{144''}{140 \left(2.53'' \right)} \right)^{2} \right) \right]$$

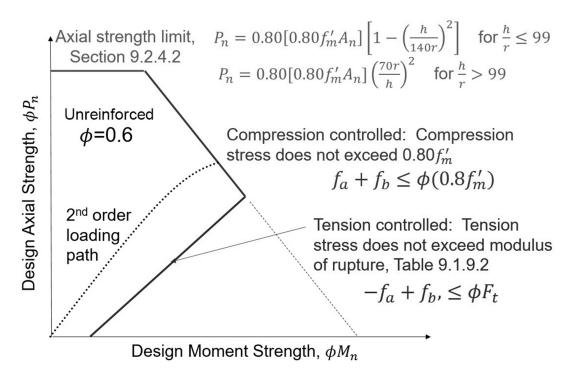
$$P_{n} = 0.8 \left[123.12 \left(0.835 \right) \right] = 0.8 \left[102.77 \right]$$

$$P_{n} = 0.8 \left[102.77 \right] = 62.2 \, \text{K/FT}$$

$$\phi_{\text{Pn}}^{\text{Pn}} = 0.6 (82.2 \text{ KLF}) = 49.33 \text{ KLF}$$

$$P_{\text{U}} = 1.2 (25 \text{ KLF}) + 1.6 (20 \text{ KLF}) = 62 \text{ KLF}$$

6. Check that øPn is greater than Pu.


University of Michigan, TCAUP

Structures II

Slide 21 of 35

TMS 402 Chapter 9

Interaction Diagram

Moment Magnification

Design for magnified moment: $M_u = \psi M_{u,0}$

$$\psi = \frac{1}{1 - \frac{P_u}{P_e}} = \frac{1}{1 - \frac{P_u}{A_n f_m' \left(\frac{70r}{h}\right)^2}}$$

- Can take $\psi = 1$ if $h/r \le 45$
- Can take ψ = 1 if 45 < h/r ≤ 60 and nominal strength reduced by 10%

University of Michigan, TCAUP

Masonry

Slide 23 of 35

Unreinforced Masonry Wall example

Given:

h = 12 ft

t = 8 in hollow CMU, fu = 2000 psi

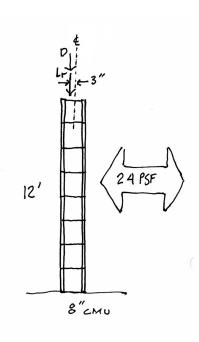
type S mortar, face shell bedding, no grout

Loading:

D = 1 k/ft + selfweight of 30 psf

Lr = 0.5 k/ft (w/ e=3 in.)

W = 24 psf (+ or -)


Load Combinations

1.4D

 $1.2D + 1.6L_{r}$

 $1.2D + 1.0W + 0.5L_r$

0.9D + 1.0W

Unreinforced Masonry Wall

example

f'm = 2000 psi (TMS 602 - table 2 - s 18)

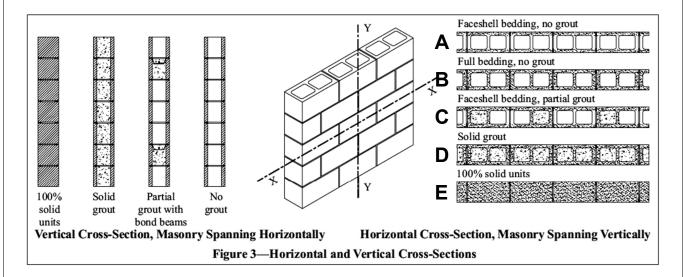
Table 2 — Compressive strength of masonry based on the compressive strength of concrete masonry units and type of mortar used in construction

Net area compressive strength of	Net area compressive strength of ASTM C90 concrete masonry units, psi (MPa)		
concrete masonry, psi (MPa) ¹	Type M or S mortar	Type N mortar	
1,750 (12.07)		2,000 (13.79)	
2,000 (13.79)	2,000 (13.79)	2,650 (18.27)	
2,250 (15.51)	2,600 (17.93)	3,400 (23.44)	
2,500 (17.24)	3,250 (22.41)	4,350 (28.96)	
2,750 (18.96)	3,900 (26.89)		
3,000 (20.69)	4,500 (31.03)		

¹ For units of less than 4 in. (102 mm) nominal height, use 85 percent of the values listed.

University of Michigan, TCAUP

Masonry


Slide 25 of 35

Unreinforced Masonry Wall

example

Section Properties of Concrete Masonry Walls TEK 14 – 1B

using A - faceshell bedding, no grout

$$A_n = 30 \text{ in}^2/\text{ft}$$

 $S_n = 81 \text{ in}^3/\text{ft}$
 $r_{avg} = 2.84 \text{ in}$

$$\frac{h}{r} = \frac{144in.}{2.84in.} = 50.7$$

(TEK 14 – 1B)

	Grout	Mortar	Net cross-sectional properties ^A		Average cross-sectional properties ^B				
Unit	spacing (in.)	bedding	A_n (in.2/ft)	I_n (in.4/ft)	S_n (in. 3 /ft)	Aavg (in.2/ft)	I_{avg} (in.4/ft)	S_{avg} (in.3/ft)	r_{ave} (in.)
Hollow	No grout	Face shell	30.0	308.7	81.0	41.5	334.0	87.6	2.84
Hollow	No grout	Full	41.5	334.0	87.6	41.5	334.0	87.6	2.84
100% sol	id/solidly grouted	Full	91.5	443.3	116.3	91.5	443.3	116.3	2.20
Hollow	16	Face shell	62.0	378.6	99.3	65.8	387.1	101.5	2.43
Hollow	24	Face shell	51.3	355.3	93.2	57.7	369.4	96.9	2.53
Hollow	32	Face shell	46.0	343.7	90.1	53.7	360.5	94.6	2.59
Hollow	40	Face shell	42.8	336.7	88.3	51.2	355.2	93.2	2.63
Hollow	48	Face shell	40.7	332.0	87.1	49.6	351.7	92.2	2.66
Hollow	72	Face shell	37.1	324.3	85.0	46.9	345.8	90.7	2.71
Hollow	96	Face shell	35.3	320.4	84.0	45.6	342.8	89.9	2.74
Hollow	120	Face shell	34.3	318.0	83.4	44.8	341.0	89.5	2.76
		3b: Vertical	Section Pro	operties (Ma	asonry Spar	nning Horizo	ontally)		
Hollow	No grout	Face shell	30.0	308.7	81.0	40.5	330.1	86.6	2.86
Hollow	No grout	Full	30.0	308.7	81.0	41.5	334.0	87.6	2.84
100% sol	id/solidly grouted	Full	91.5	443.3	116.3	91.5	443.3	116.3	2.20
Hollow	16	Face shell	60.8	376.0	98.6	71.2	397.4	104.2	2.36
Hollow	24	Face shell	50.5	353.6	92.7	61.0	374.9	98.3	2.48
Hollow	32	Face shell	45.4	342.4	89.8	55.8	363.7	95.4	2.55
Hollow	40	Face shell	42.3	335.6	88.0	52.8	357.0	93.6	2.60
Hollow	48	Face shell	40.3	331.1	86.9	50.7	352.5	92.5	2.64
Hollow	96	Face shell	35.1	319.9	83.9	45.6	341.3	89.5	2.74
Hollow	120	Face shell	34.1	317.7	83.3	44.6	339.0	88.9	2.76

Table 3-8-inch (203-mm) Single Wythe Walls, 1% in. (32 mm) Face Shells (standard)

University of Michigan, TCAUP Masonry Slide 27 of 35

Unreinforced Masonry Wall example

Load Combinations

1.4D

 $1.2D + 1.6L_{\rm r}$

 $1.2D + 1.0W + 0.5L_{r}$

0.9D + 1.0W

Determine the controlling load combination

A. $1.2D + 1.0W + 0.5L_r$ Wind pressure (compression on outside)

B. $1.2D + 1.0W + 0.5L_r$ Wind suction (compression on inside)

C. 0.9D + 1.0W Wind pressure (compression on outside)

D. 0.9D + 1.0W Wind suction (compression on inside)

Load Combination	Tensile Stress (psi)
$1.2D + 1.0W + 0.5L_r$ wind pressure	?
$1.2D + 1.0W + 0.5L_r$ wind suction	?
0.9D + 1.0W wind pressure	?
0.9D + 1.0W wind suction	?

Load Combinations

1.4D

 $1.2D + 1.6L_{r}$

 $1.2D + 1.0W + 0.5L_{r}$

0.9D + 1.0W

Determine the controlling load combination

A. 1.2D + 1.0W + 0.5L_r Wind pressure (compression on outside)

B. $1.2D + 1.0W + 0.5L_r$ Wind suction (compression on inside)

C. 0.9D + 1.0W Wind pressure (compression on outside)

D. 0.9D + 1.0W Wind suction (compression on inside)

Load Combination	Tensile Stress (psi)
$1.2D + 1.0W + 0.5L_r$ wind pressure	5.9 psi
$1.2D + 1.0W + 0.5L_r$ wind suction	40.4 psi
0.9D + 1.0W wind pressure	12.4 psi
0.9D + 1.0W wind suction	47.6 psi

University of Michigan, TCAUP Masonry Slide 29 of 35

Unreinforced Masonry Wall

example

Given:

h = 12 ft

t = 8 in hollow CMU, fu = 2000 psi

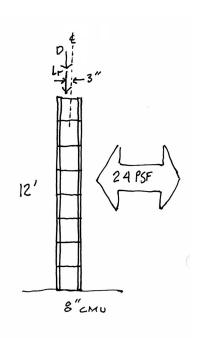
type S mortar, face shell bedding, no grout

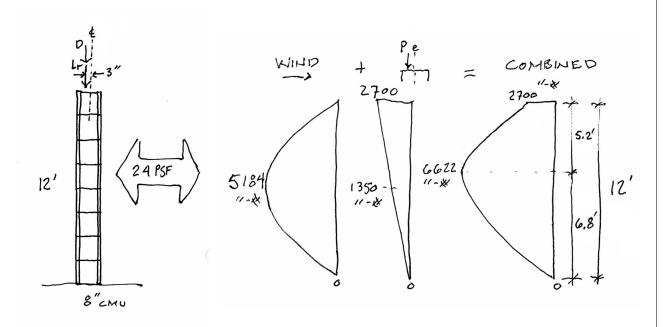
Loading:

D = 1 k/ft + selfweight of 30 psf

Lr = 0.5 k/ft (w/ e=3 in.)

W = 24 psf (+ or -)


Load Combinations


1.4D

 $1.2D + 1.6L_{r}$

 $1.2D + 1.0W + 0.5L_r$

0.9D + 1.0W

University of Michigan, TCAUP Masonry Slide 31 of 35

Unreinforced Masonry Wall example

0.9D + 1.0W - Wind suction (compression on inside face of wall)

Location of max moment,
$$x$$

$$x = \frac{h}{2} - \frac{M_{uf}}{w_u h} = \frac{144in.}{2} - \frac{2700 \frac{lb \cdot ln.}{ft}}{24 \frac{lb}{f+2} (12ft)} = 62.6in.$$

Factored axial load,
$$P_u = 0.9 \left(1000 \frac{lb}{ft} + 30 \frac{lb}{ft^2} \left(\frac{62.6in.}{12in./ft} \right) \right) = 1041 \frac{lb}{ft}$$

Moment at top of wall,
$$M_{uf}$$

$$M_{uf} = P_{uf}e = 0.9 \left(1000 \frac{lb}{ft}\right) (3.0in.) = 2700 \frac{lb \cdot in.}{ft}$$

Maximum combined
$$M_{u,0} = \frac{M_{uf}}{2} + \frac{w_u h^2}{8} + \frac{M_{uf}^2}{2w_u h^2}$$

$$= \frac{2700 \frac{lb \cdot in.}{ft}}{2} + \frac{24 \frac{lb}{ft^2} (12ft)^2 (12 \frac{in.}{ft})}{8} + \frac{\left(2700 \frac{lb \cdot in.}{ft}\right)^2}{2\left(24 \frac{lb}{ft^2}\right) (12ft)^2 \left(12 \frac{in.}{ft}\right)}$$
$$= 1350 + 5184 + 88 = 6622 \frac{lb \cdot in.}{ft}$$

University of Michigan, TCAUP Masonry Slide 32 of 35

0.9D + 1.0W - Wind suction (compression on inside face of wall)

9.2.4.3 P-Delta effects

9.2.4.3.1 Members shall be designed for the strength level axial load, P_u , and the moment magnified for the effects of member curvature, M_u .

9.2.4.3.2 The magnified moment, M_u , shall be determined either by a second-order analysis, or by a first-order analysis and Equations 9-13 and 9-14.

$$M_{\cdot \cdot} = \psi M_{\cdot \cdot \cdot \circ}$$

$$\psi = \frac{1}{1 - \frac{P_u}{A_n f'_m \left(\frac{70r}{h}\right)^2}}$$
 (Equation 9-14)

9.2.4.3.3 A value of $\psi = 1$ shall be permitted for members in which $h/r \le 45$.

Moment Magnifier:

$$\psi = \frac{1}{1 - \frac{P_u}{A_n f_m' \left(\frac{70r}{h}\right)^2}} = \frac{1}{1 - \frac{1041\frac{lb}{ft}}{(30\frac{in.^2}{ft})(2000psi)\left(\frac{70}{144}\right)^2}} = 1.01$$

University of Michigan, TCAUP

Masonry

Slide 33 of 35

Unreinforced Masonry Wall example

0.9D + 1.0W - Wind suction (compression on inside face of wall)

Moment

$$\psi = 1.01$$

Magnifier:

Compression Stress:

$$\frac{P_u}{A_n} + \frac{\psi_{M_{u,0}}}{S_n} = \frac{1041 \frac{lb}{ft}}{30 \frac{in.^2}{ft}} + \frac{1.01 \left(6622 \frac{lb \cdot in.}{ft}\right)}{81.0 \frac{in.^3}{ft}} = 34.7 + 82.6 = 117.3 \ psi$$

Nominal Strength = 0.8(2000 psi) =1600 psi (f'm)

Design Strength = 0.6(1600 psi) = 960 psi OK

Tension stress:

$$+\frac{P_u}{A_n} - \frac{\psi M_{u,0}}{S_n} = +34.7 - 82.6 = 47.9 \text{ psi tension}$$

Nominal Strength = 51 psi (f_r)

Design Strength = 0.6 (51 psi) = 30.6 psi

0.9D + 1.0W - Wind suction (compression on inside face of wall)

What to do to make wall work? (short of reinforcing wall)

- 1. Increase wall size, say to 12 in. (Sn = 139.6 in³/ft). Maximum tensile stress is 12.7 psi.
- 2. Grout wall. (w-wall = 75 psf; An = 91.5 in²/ft; Sn = 116.3 in³/ft; f_r = 163 psi) Maximum tensile stress of 45.3 psi is less than design stress of 0.6(163) = 97.8 psi
- 3. Use Portland cement/lime or mortar cement (modulus of rupture is 84 psi). Maximum tensile stress of 47.2 psi is less than design stress of 0.6(94)=50.4 psi
- 4. Use pilasters

University of Michigan, TCAUP

Masonry

Slide 35 of 35