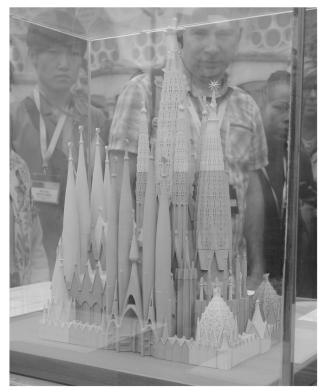

Masonry Walls

- Non-reinforced axial compression
- · Reinforced axial compression

Sagrada Familia Barcelona, Spain Arch: Antonio Gaudi

Masonry


Slide 1 of 40

Sagrada Familia 1882 - 2026? Antonio Gaudi 1852 - 1926 Barcelona, Spain

University of Michigan, TCAUP

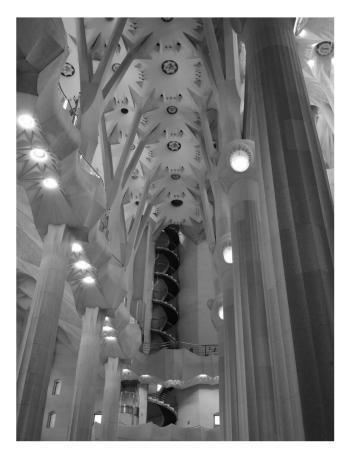
University of Michigan, TCAUP

Masonry

Slide 3 of 40

Sagrada Familia 1882 – 2026? Antonio Gaudi 1852 – 1926 Barcelona, Spain


University of Michigan, TCAUP


Masonry

Slide 5 of 40

Sagrada Familia 1882 – 2026? Antonio Gaudi 1852 – 1926

Barcelona, Spain

University of Michigan, TCAUP

Masonry

Slide 7 of 40

Sagrada Familia 1882 – 2026? Antonio Gaudi 1852 – 1926 Barcelona, Spain

University of Michigan, TCAUP

Masonry

Slide 9 of 40

Casa Milà 1906 – 1912 Antonio Gaudi 1852 – 1926 Barcelona, Spain

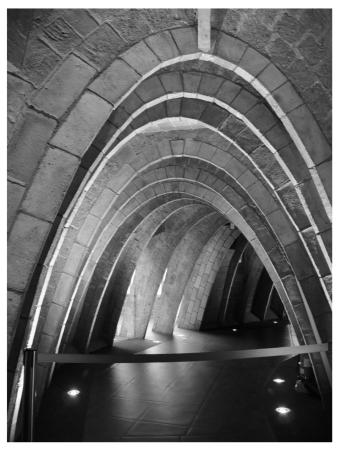
Casa Milà 1906 – 1912 Antonio Gaudi 1852 – 1926 Barcelona, Spain

University of Michigan, TCAUP

Masonry

Slide 11 of 40

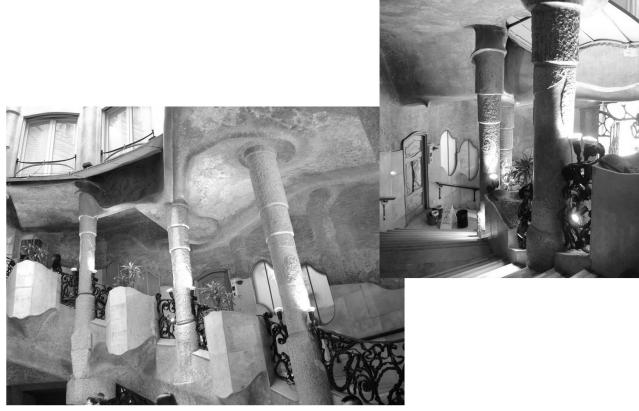
Casa Milà 1906 – 1912 Antonio Gaudi 1852 – 1926 Barcelona, Spain


University of Michigan, TCAUP

Masonry

Slide 12 of 40

Casa Milà 1906 – 1912 Antonio Gaudi 1852 – 1926 Barcelona, Spain



University of Michigan, TCAUP

Masonry

Slide 13 of 40

Casa Milà 1906 – 1912 Antonio Gaudi 1852 – 1926 Barcelona, Spain

University of Michigan, TCAUP

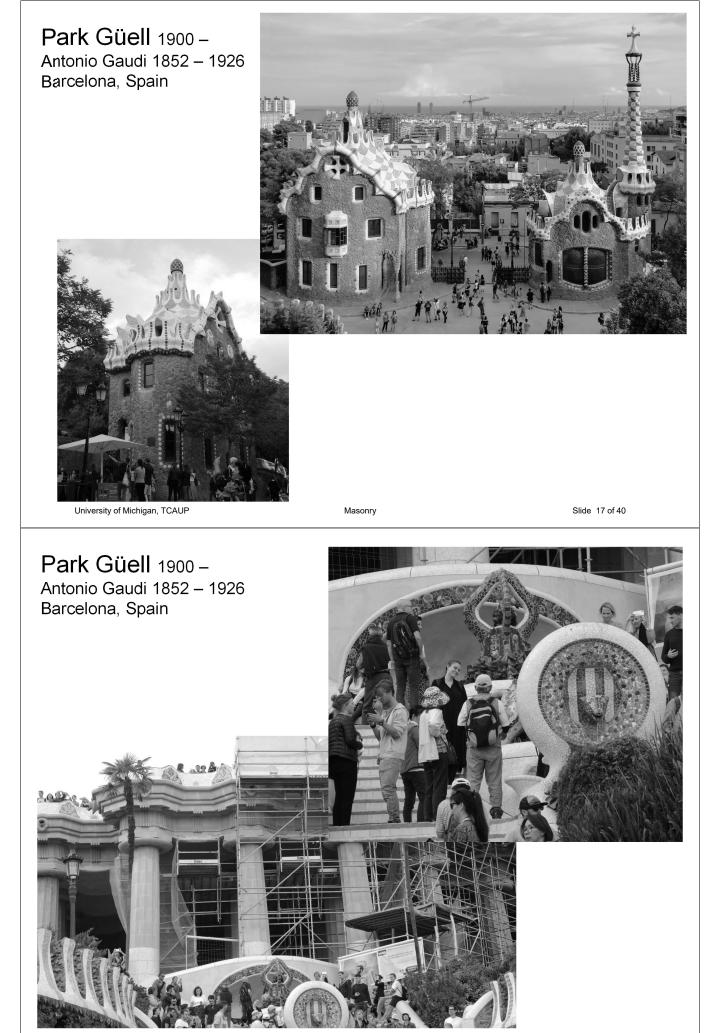
Masonry

Park Güell 1900 – Antonio Gaudi 1852 – 1926 Barcelona, Spain

University of Michigan, TCAUP

Masonry

Slide 15 of 40


Park Güell 1900 – Antonio Gaudi 1852 – 1926 Barcelona, Spain

Slide 16 of 40

University of Michigan, TCAUP

Masonry

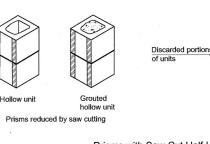
Masonry Strength

f'm - specified masonry strength

f'mt - tested masonry strength, based on prism test

- unit strength fu
- mortar type M, S, N, O
- grout strength f'g
- quality (inspected, full joints)

Prisms with Full Size Units



Solid unit prism

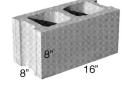
Hollow unit prism

for prism construction biscarded portions if units locations

Portions of units used

Prisms with Saw-Cut Half Units

University of Michigan, TCAUP

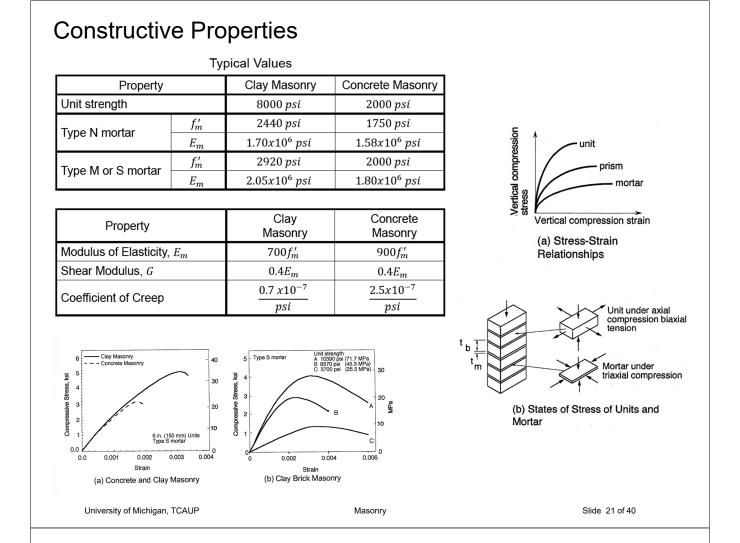

Masonry

Slide 19 of 40

Masonry Strength

Masonry strength, f'm, based on unit strength, fu, and mortar type

Concrete Masonry


TMS 602 1.4 table 1.

Required Net Area Co of Clay Masor	f'm For Net Area Compressive	
When Used With Type M or S Mortar	When Used With Type N Mortar	Strength of Masonry (psi)
1,700	2,100	1,000
3,350	4,150	1,500
4,950	6,200	2,000
6,600	8,250	2,500
8,250	10,300	3,000
9,900		3,500
11,500		4,000

(From Masonry Standards Joint Committee Specifications for Masonry Structures, ACI 530.1/ASCE 6/TMS 602-99)

Required Net Area Co of Concrete Mas	f'm For Net Area					
When Used With Type M or S Mortar	When Used With Type N Mortar	Compressive Strength of Masonry (psi)				
1,250	1,300	1,000				
1,900	2,150	1,500				
2,800	3,050	2,000				
3,750	4,050	2,500				
4,800	5,250	3,000				

(From International Building Code 2000 and Masonry Standards Joint Committee Specifications for Masonry Structures, ACI 530.1/ASCE 6/TMS 602-99)

Analysis and Design

Empirical approach

based on experience limits on lateral loading limits on height limits on eccentricity (basically no flexure) non-reinforced

Rational approach

based on Strength Design (LRFD) either reinforced or non-reinforced limited by strength

Application

- non-reinforced
- low lateral loads wind or seismic
- e.g. exterior curtain walls & interior partitions

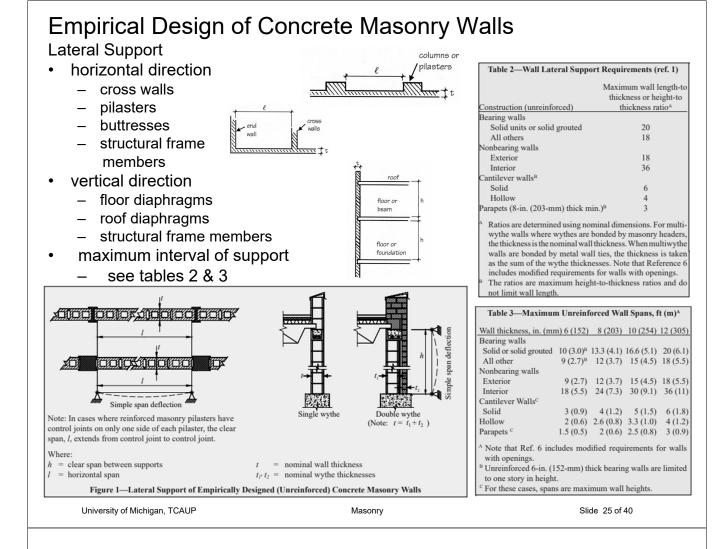
Prescriptive Criteria

- wall height to thickness
- shear wall length & spacing
- minimum wall thickness
- maximum building height
- usually with running bond

Empirical Design of Concrete Masonry Walls

Three things to check by International Building Code (IBC 2006)

Seismic Design Category


University of Michigan, TCAUP

- if not part of seismic resisting system A, B or C
- if part of the seismic lateral force resisting system A only
- Basic wind speed vs building height (IBC table 1)
- gravity load resultant within the kern (middle 1/3)

Table 1-2006 IBC Empirical Design Limitations Based on Building Height and Basic Wind Speed ^A						
	Basic wind speed, w, mph (m/s)					
	Building height,	$w \le 90$	$90 < w \le 100$	$100 < w \le 110$	110 < w	
Masonry wall type:	<i>h</i> , ft (m)	$(w \le 40)$	$(40 < w \le 45)$	$(45 < w \le 49)$	(49 < w)	
Part of the lateral force-						
resisting system	$h \le 35(11)$	Allowed Not allowed				
Interior, not part of the	h > 180 (55)	Not allowed				
lateral force-resisting	60 (18) ≤ <i>h</i> ≤ 180 (55)	Allowed		Not allowed		
system, in buildings other	35 (11) ≤ <i>h</i> ≤ 60 (18)	All	owed	Not a	llowed	
than enclosed ^A	h ≤ 35 (11)		Allowed		Not allowed	
Exterior, not part of the	h > 180 (55)		Not allowed			
lateral force-resisting	60 (18) ≤ <i>h</i> ≤ 180 (55)	Allowed		Not allowed		
system	$35(11) \le h \le 60(18)$	Allowe2005 Not allowed				
Exterior	<i>h</i> ≤ 35 (11)		Allowed		Not allowed	
A Per Minimum Design Loads for Buildings and Other Structures, ASCE 7 (ref. 4).						

Minimum wall thickness

- for one story $t \ge 6$ " thick (also for shear walls)
- for more than one story $t \ge 8$ " thick
- t min for unreinforced foundation wall is 8"

Allowable Compressive Stress

- solid or fully grouted
 - based on full gross area
- hollow units
 - use correct area voids
 - most new CMU will be ASTM C90 2006 or later
 - older units use "previous editions"

Table 4—Allowable C	ompressive Str	ess for	Hollow Unit Mase
Empirical Desi	C 90-06 or Later)		
			Hollow loadbearing
Al	lowable compre	ssive stresses	2,000 (14) or
b	ased on gross ci	ross-sectional	1,500 (10) 1,000 (6.9)
	area, psi		700 (4.8)
Gross area compressive	Type M or S		Hollow loadbearing
strength of unit, psi (MPa)	mortar	mortar	2,000 (14) or
succession of and por (intra-			1,500 (10)
Solid and Solidly Grouted M	Iasonry (refs. 1	. 6:	1,000 (6.9)
Solid concrete brick:		, .,.	700 (4.8)
8,000 (55) or greater	350 (2.41)	300 (2.07)	Hollow loadbearing 2,000 (14) or
4,500 (31)	225 (1.55)	200 (1.38)	1,500 (10)
2,500 (17)	160 (1.10)	140 (0.97)	1,000 (6.9)
1,500 (10)	115 (0.79)	100 (0.69)	700 (4.8)
Grouted concrete masonry:			Hollow walls (non
4,500 (31) or greater	225 (1.55)	200 (1.38)	$t \le 8$ in. (203 r
2,500 (17)	160 (1.10)	140 (0.97)	$8 \le t \le 12$ in (20 $t \ge 12$ in (305
1,500 (10)	115 (0.79)	100 (0.69)	1 <u>-</u> 12 m (505
Solid concrete masonry units:			
3,000 (21) or greater	225 (1.55)	200 (1.38)	Hollow Unit Mase
2,000 (14)	160 (1.10)	140 (0.97)	Editions of ASTM
1,200 (8.3)	115 (0.79)	100 (0.69)	Hollow concrete m
Hollow walls (noncomposite	masonry bonded	i ^B):	2,000 (14) or 1,500 (10)
Solid units:			1,000 (6.9)
2,500 (17) or greater	160 (1.10)	140 (0.97)	700 (4.8)
1,500 (10)	115 (0.79)	100 (0.69)	Hollow walls (non
			Hollow units

Hollow Unit Masonry (Unit	ts Complying W	ith ASTM
C 90-06 or Later) (ref. 6) ^c :		
Hollow loadbearing CMU, t		
2,000 (14) or greater	140 (0.97)	120 (0.83)
1,500 (10)	115 (0.79)	100 (0.69)
1,000 (6.9)	75 (0.52)	70 (0.48)
700 (4.8)	60 (0.41)	55 (0.38)
Hollow loadbearing CMU, 8 in	t < t < 12 in. (20)	3 to 305 mm)D
2,000 (14) or greater	125 (0.86)	110 (0.76)
1,500 (10)	105 (0.72)	90 (0.62)
1,000 (6.9)	65 (0.49)	60 (0.41)
700 (4.8)	55 (0.38)	50 (0.35)
Hollow loadbearing CMU, t	≥ 12 in (305 mm) ^D :
2,000 (14) or greater	115 (0.79)	100 (0.69)
1,500 (10)	95 (0.66)	85 (0.59)
1,000 (6.9)	60 (0.41)	55 (0.38)
700 (4.8)	50 (0.35)	45 (0.31)
Hollow walls (noncomposite	masonry bonde	d ^B):
$t \le 8 \text{ in.} (203 \text{ mm})^{D}$	75 (0.52)	70 (0.48)
8 < t < 12 in (203 to 305 m	m) ^D 70 (0.48)	65 (0.45)
$t \ge 12 \text{ in } (305 \text{ m.m})^{\text{D}}$	60 (0.41)	55 (0.38)
Hollow Unit Masonry (Unit Editions of ASTM C 90) (re Hollow concrete masonry un	ef. 1) ^c :	ith Previous/
2,000 (14) or greater	140 (0.97)	120 (0.83)
1,500 (10)	115 (0.79)	100 (0.69)

- ^A Linear interpolation for intermediate values of compressive strength is permitted.
- ¹⁰ Where floor and roof loads are carried on one wythe, the gross cross-sectional area is that of the wythe under load; if both wythes are loaded, the gross cross-sectional area is that of the wall minus the area of the cavity between the wythes. Walls bonded with metal ties shall be considered as noncomposite walls unless collar ionist are filled with mortar or erout.
- ^c Walls unless collar joints are filled with mortar or grout.
 ^c Minimum unit face shell thicknesses, for units 10 in. (254 mm) and greater in width, were reduced beginning with ASTM C 90-06. Hence, minimum allowable compressive stresses should be reduced accordingly when using these units. See text for further information.
- ^D t = nominal unit thickness

walls (noncomposite m

75 (0.52)

60 (0.41)

75 (0.52)

onry bonded^B)

70 (0.48)

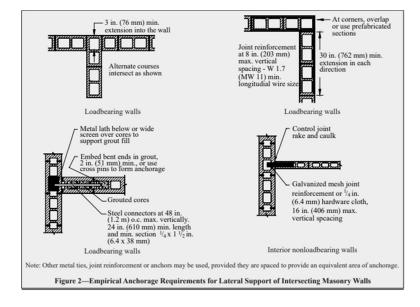
55 (0.38)

70 (0.48)

Allowable Compressive Stress

- solid or fully grouted
 - based on full gross area
- hollow units
 - use correct area voids
 - most new CMU will be ASTM C90 2006 or later
 - older units use "previous editions"

Table 4—Allowable Compressive Stress for			Hollow Unit Masonry (Uni	ts Complying W	ith ASTM	
Empirical Design of Masonry			C 90-06 or Later) (ref. 6) ^c :			
			Hollow loadbearing CMU, t	≤ 8 in. (203 mm)	·:	
Al	lowable compre	ssive stresses	2,000 (14) or greater	140 (0.97)	120 (0.83)	
	ased on gross c		1,500 (10)	115 (0.79)	100 (0.69)	
	area, psi		1,000 (6.9)	75 (0.52)	70 (0.48)	
Gross area compressive	Type M or S	Type N	700 (4.8) Hollow loadbearing CMU, 8 in	60 (0.41)	55 (0.38)	
strength of unit, psi (MPa)	mortar	mortar	2,000 (14) or greater	125 (0.86)	110 (0.76)	
strength of thirt, psi (WFa)	mortai	mortai	1,500 (10)	105 (0.72)	90 (0.62)	
Solid and Solidly Counted M	Account (unfo 1	0.	1,000 (6.9)	65 (0.49)	60 (0.41)	
Solid and Solidly Grouted M Solid concrete brick:	lasonry (reis. 1	, 0):	700 (4.8)	55 (0.38)	50 (0.35)	
	250 (2.41)	200 (2.07)	Hollow loadbearing CMU, t			
8,000 (55) or greater	350 (2.41)	300 (2.07)	2,000 (14) or greater	115 (0.79)	100 (0.69)	
4,500 (31)	225 (1.55)	200 (1.38)	1,500 (10)	95 (0.66)	85 (0.59)	
2,500 (17)	160 (1.10)	140 (0.97)	1,000 (6.9) 700 (4.8)	60 (0.41) 50 (0.35)	55 (0.38) 45 (0.31)	
1,500 (10)	115 (0.79)	100 (0.69)	Hollow walls (noncomposite			A Linear interpolation for intermediate values of compressive
Grouted concrete masonry:			$t \le 8 \text{ in.} (203 \text{ mm})^{\text{D}}$	75 (0.52)	70 (0.48)	strength is permitted.
4,500 (31) or greater	225 (1.55)	200 (1.38)	$8 \le t \le 12$ in (203 to 305 n		65 (0.45)	^B Where floor and roof loads are carried on one wythe, the gross
2,500 (17)	160 (1.10)	140 (0.97)	$t \ge 12 \text{ in } (305 \text{ m.m})^{\text{D}}$	60 (0.41)	55 (0.38)	cross-sectional area is that of the wythe under load; if both
1,500 (10)	115 (0.79)	100 (0.69)				wythes are loaded, the gross cross-sectional area is that of the
Solid concrete masonry units:						wall minus the area of the cavity between the wythes. Walls
3,000 (21) or greater	225 (1.55)	200 (1.38)	Hollow Unit Masonry (Unit		ith Previous	bonded with metal ties shall be considered as noncomposite
2,000 (14)	160 (1.10)	140 (0.97)	Editions of ASTM C 90) (re Hollow concrete masonry un			walls unless collar joints are filled with mortar or grout.
1,200 (8.3)	115 (0.79)	100 (0.69)	2,000 (14) or greater	140 (0.97)	120 (0.83)	^c Minimum unit face shell thicknesses, for units 10 in. (254 mm)
Hollow walls (noncomposite	masonry bonded	1 ^в):	1,500 (10)	115 (0.79)	100 (0.69)	and greater in width, were reduced beginning with ASTM C
Solid units:			1,000 (6.9)	75 (0.52)	70 (0.48)	90-06. Hence, minimum allowable compressive stresses should
2,500 (17) or greater	160 (1.10)	140 (0.97)	700 (4.8)	60 (0.41)	55 (0.38)	be reduced accordingly when using these units. See text for
1,500 (10)	115 (0.79)	100 (0.69)	Hollow walls (noncomposite	masonry bonde	d ^B):	further information.
			Hollow units	75 (0.52)	70 (0.48)	^D $t =$ nominal unit thickness.
University of Michiga	n, TCAUP		M	lasonry		Slide 27 of 40


Empirical Design of Concrete Masonry Walls

Anchorage requirements for lateral support of bracing walls

• see figure 2

Anchorage to structural frames

- 1/2" bolts at max. 4 ft o.c.
- 4" embedment length in masonry

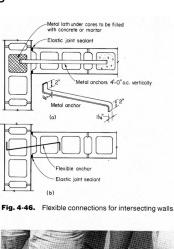
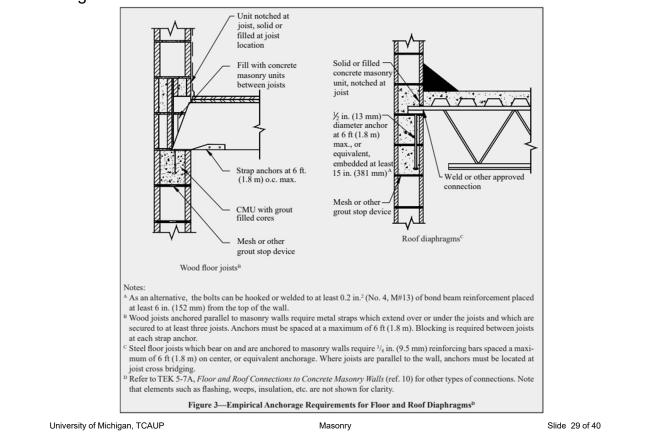
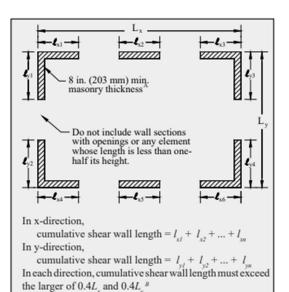



Fig. 4-47. Steel tiebar provides lateral support to wall at right.

Anchorage requirements for floor and roof diaphragms

• see figure

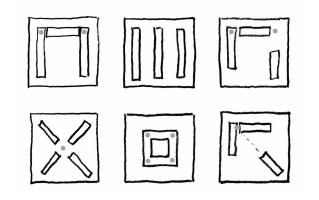
Empirical Design of Concrete Masonry Walls


Shear walls

- Spacing
 - minimum cumulative length = 40% of building length (Figure 4)
 - shear wall must be longer than 1/2 its height

Maximum diaphragm ratios

 shear walls spaced so that the length-to-width ratio of each diaphragm transferring lateral forces to the shear wall does not exceed the values in Table 5


Table 5—Shear Wall Diaphragm Length-to-Width Ratios (ref. 1)				
Floor or roof Maximum length-to-width				
diaphragm construction	ratio of diaphragm panel			
Cast-in-place concrete	5:1			
Precast concrete	4:1			
Metal deck with concrete fill	3:1			
Metal deck with no fill	2:1			
Wood diaphragm	2:1			

^A Note that the 2003 IBC allows shear walls of one-story buildings to have a minimum thickness of 6 in. (152 mm).
^B Note that in the 2008 Building Code Requirements for Masonry Structures, this criteria is: In each direction, cumulative shear wall length must exceed the larger of 0.2L_x and 0.2L_y.

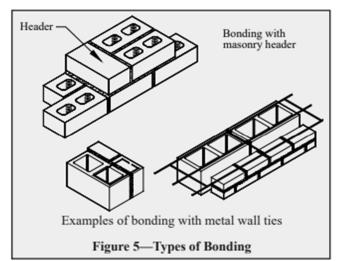
Figure 4—Empirically Designed Shear Wall Requirements

Lateral Force Resistance

Stability requires at least 2 points of intersection.

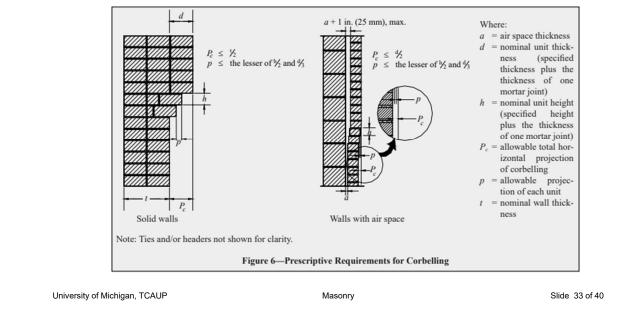
Force is more evenly resisted with centroid of walls in the kern of slab

University of Michigan, TCAUP


Masonry

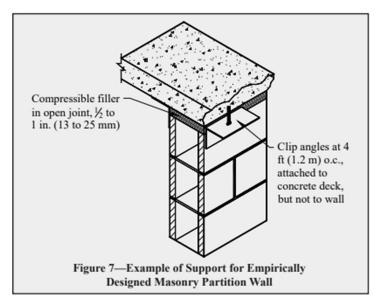
Slide 31 of 40

Empirical Design of Concrete Masonry Walls


Bonding of Multiwythe Walls

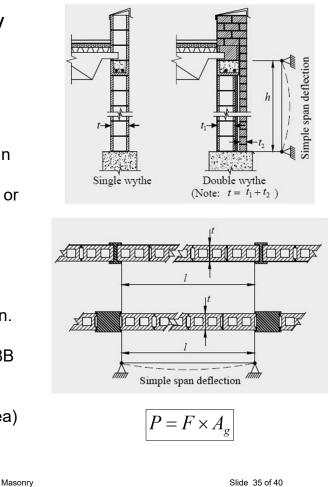
- masonry headers solid units
 - 4% of wall surface
 - extend 3" min. into backing wall
 - or overlap from both sides by 3"
 - max. distance between = 24"
- masonry headers hollow units
 - vertical intervals of min. 34"
 - with 3" overlap
- metal wall ties
 - wire size W2.8
 - one tie for each 4.5 ft² wall surface
 - adjustable ties each 1.77 ft² surface
 - max. vertical spacing = 24"
 - max horizontal spacing = 36"
 - hollow walls use rectangular ties
 - min. 2" hook at ends
- prefabricated joint reinforcement
 - 1 crosswire for each 2.67 ft² wall surface
 - max. vertical spacing = 24"
 - min. wire size = W1.7

Other details


- a change in wall thickness requires a grouted course in the thinner section to transfer load to the thicker section
- Chases and recesses in the wall > 12" require a lintel
- Lintel end bearing min. 4" (8" is typical)
- · Do not support masonry walls on wood spanning members
- Corbelling see Figure 6

Empirical Design of Concrete Masonry Walls

Interior Partition Walls


- must be isolated from load bearing structure
- gaps must be allowed (not filled with mortar) between partition wall and floor above to accommodate any deflection of the floor.

Empirical Concrete Masonry Using TEK 14-8B (2006 IBC)

Given: location, geometry, material Find: strength (load capacity)

- 1. Check axial loading must be within middle 1/3
- Check seismic category to be A, B, or C, or only A if part of the seismic lateral force resisting system.
- 3. Check wind speed (ASCE-7 2005) compare with table 1, TEK 14-8B
- 4. Check minimum thickness.1 story = 6" min. 2 story = 8" min.
- 5. Check lateral support (vertical or horizontal) tables 2 and 3 TEK 14-8B
- 6. Determine allowable compressive stress from table 4 TEK 14-8B
- 7. Allowable load = (stress) (gross area)

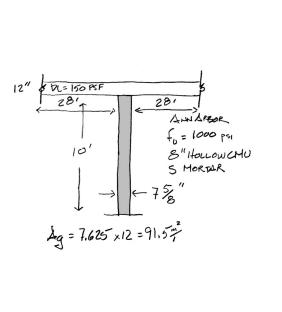
Empirical Design Example

University of Michigan, TCAUP

Given:

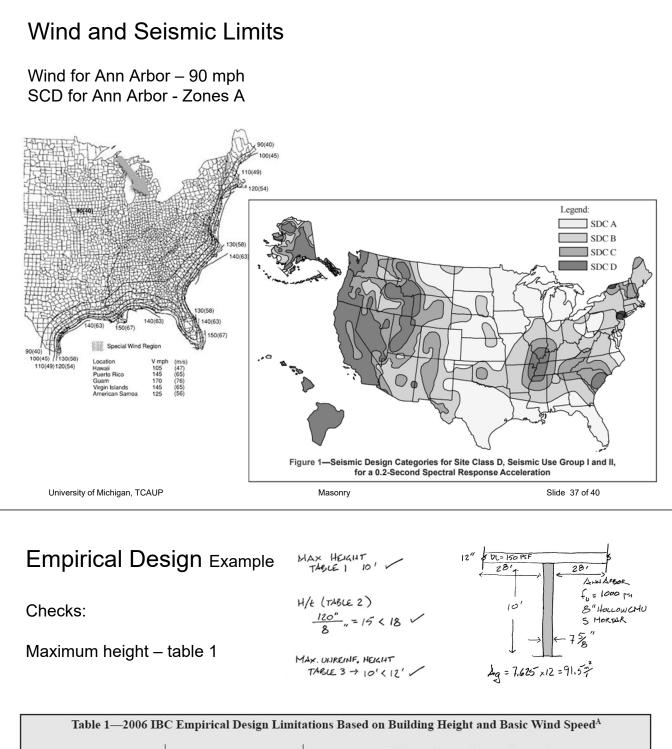
8" hollow non-reinforced CMU wall Ann Arbor, Mich. Interior DL = 150 PSF

```
Find:
LL capacity
```


Checks:

Axially loaded : loaded within middle 1/3 (kern)

Seismic Category: A, B, or C , or only A if part of the seismic lateral force resisting system


Wind:

less that 90mph (by 2006 code)

AXIAL LOADING

FOR ANN ARBOR SPC > A WINDLOAD 90MPH <110

	Building height,	w < 90	Basic wind sp 90 < w < 100	eed, w , mph (m/s) 100 < w < 110	110 < w
Masonry wall type:	h, ft (m)	$(w \le 90)$ $(w \le 40)$	$(40 < w \le 45)$		(49 < w)
Part of the lateral force-					
resisting system	<i>h</i> ≤ 35 (11)	Allowed Not allow			
Interior, not part of the	<i>h</i> > 180 (55)	Not allowed			
lateral force-resisting	$60(18) < h \le 180(55)$	Allowed Not allowed			
system, in buildings other	35 (11) < <i>h</i> ≤ 60 (18)	All	owed	Not a	allowed
than enclosed ^A	<i>h</i> ≤ 35 (11)		Allowed		Not allowed
Exterior, not part of the	<i>h</i> > 180 (55)		Not allowed		
lateral force-resisting	60 (18) ≤ <i>h</i> ≤ 180 (55)	Allowed Not allowed			
system	35 (11) < <i>h</i> ≤ 60 (18)	Allowed Not allowed			
Exterior	<i>h</i> ≤ 35 (11)	Allowed Not allow			Not allowed
^A Per Minimum Design Loads for Buildings and Other Structures, ASCE 7 (ref. 4).					

TEK 14-8B © 2008 National Concrete Masonry Association (replaces TEK 14-8A)

Empirical Design Example

Checks:

Minimum bracing - table 2

Maximum unreinforced height - table 3

Table 2—Wall Lateral Support	Table 3—Maximum Unreinforced Wall Spans, ft (m) ^A					
	Maximum wall length-to	Wall thickness, in. (mr	n) 6 (152)	8 (203)	10 (254)	12 (305)
	thickness or height-to	Bearing walls				
Construction (unreinforced)	thickness ratio ^A	Solid or solid grouted	10 (3.0) ^B	13.3 (4.1)	16.6 (5.1)	20 (6.1)
Bearing walls		All other	9 (2.7) ^B	12 (3.7)	15 (4.5)	18 (5.5)
Solid units or solid grouted	20	Nonbearing walls				
All others	18	Exterior	9 (2.7)	12 (3.7)	15 (4.5)	18 (5.5)
Nonbearing walls		Interior	18 (5.5)	24 (7.3)	30 (9.1)	36 (11)
Exterior	18	Cantilever Walls ^C				
Interior	36	Solid	3 (0.9)	4 (1.2)	5 (1.5)	6 (1.8)
Cantilever walls ^B		Hollow	2 (0.6)	2.6 (0.8)	3.3 (1.0)	4 (1.2)
Solid	6	Parapets C	1.5 (0.5)	2 (0.6)	2.5 (0.8)	3 (0.9)
Hollow	4				, ,	
Parapets (8-in. (203-mm) thick min.)	в 3	^A Note that Ref. 6 inc with openings.	ludes moo	uned requ	irements f	or walls

MAX HEIGHT TABLE | 10'

H/t (TABLE 2)

MAX. UNREINF. HEIGHT

120" = 15 < 18 V

TABLE 3 -> 10' < 12'

12" & DL= 150 PSF

28'

10'

Ag = 7.625 x12 = 91.57

281

ANN SPEOR

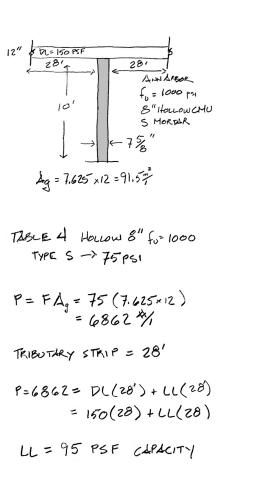
fu = 1000 psi

5 MORTAR

8" HOLLOWCHU

University of Michigan, TCAUP

Masonry


Slide 39 of 40

Empirical Design Example Find allowable stress – table 4

Find load P = F Ag

Calculate per foot using gross Area

psi (Mpa)	psi (l	Mpa)
Hollow Unit Masonry (Units C		
C 90-06 or Later) (ref. 6) ^C :	Type M or	S Type N
Hollow loadbearing CMU, $t \le 8$ in	n mortar	mortar
	40 (0.97)	
1,500 (10)	115 (0.79)	100 (0.69)
1,000 (6.9)	75 (0.52)	70 (0.48)
700 (4.8)	60 (0.41)	55 (0.38)
Hollow loadbearing CMU, 8 in. < i	<12 in. (20	3 to 305 mm) ^D :
2,000 (14) or greater	25 (0.86)	110 (0.76)
1,500 (10)	05 (0.72)	90 (0.62)
1,000 (6.9)	65 (0.49)	60 (0.41)
700 (4.8)	55 (0.38)	50 (0.35)
Hollow loadbearing CMU, $t \ge 12$	in (305 mm	n) ^D :
2,000 (14) or greater	15 (0.79)	100 (0.69)
1,500 (10)	95 (0.66)	85 (0.59)
1,000 (6.9)	60 (0.41)	55 (0.38)
700 (4.8)	50 (0.35)	45 (0.31)
Hollow walls (noncomposite mas	sonry bonde	ed ^B):
$t \le 8 \text{ in.} (203 \text{ mm})^{D}$	75 (0.52)	70 (0.48)
8 < t < 12 in (203 to 305 mm) ^D	70 (0.48)	65 (0.45)
$t \ge 12 \text{ in } (305 \text{ m.m})^{\text{D}}$	60 (0.41)	55 (0.38)

Masonry