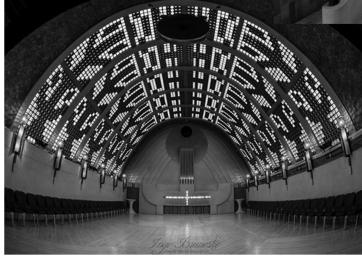
Masonry

- Mortar
- Grout
- Reinforcement

University of Michigan, TCAUP


Masonry

Slide 1 of 52

Böttcherstraße, Bremen

Haus Atlantis, Himmelssaal Bernhard Hoetger, 1922 - 1931

University of Michigan, TCAUP

Masonry

University of Michigan, TCAUP

Masonry

Slide 3 of 52

Böttcherstraße, Bremen

Bernhard Hoetger, 1922 - 1931

Mortar Types

Types M, S, N, O

The following mortar designations took effect in the mid-1950's:

Μ	а	S	0	Ν	w	0	r	K
strong	est							weakest

Table 2-3. Guide to the Selection of Mortar Type*

		Mortar type		
Location	Building segment	Recommended	Alternative	
Exterior, above grade	Load-bearing walls Non-load-bearing walls Parapet walls	N O** N	S or M N or S S	
Exterior, at or below grade	Foundation walls, retaining walls, manholes, sewers, pavements, walks, and patios	Sţ	M or N†	
Interior	Load-bearing walls Non-load-bearing partitions	N O	S or M N	

*Adapted from ASTM C270. This table does not provide for specialized mortar uses, such as chimney, reinforced masonry, and acid-resistant mortars. **Type O mortar is recommended for use where the masonry is unlikely to be frozen when saturated or unlikely to be subjected to high winds or other significant lateral loads. Type N or S mortar should be used in other cases. Masonry exposed to weather in a nominally horizontal surface is extremely vulnerable to weathering. Mortar for such masonry should be selected with due caution.

Note: For tuckpointing mortar, see "Tuckpointing," Chapter 9.

Portland cement - lime mortars

Relative Parts by Volume

mortar	Portland	lime	sand
type	cement		
М	1	¹ 4	3 ¹ 2 4 ¹ 2
s	1	¹ 2	4 ¹ 2
Ν	1	1	6
о	1	2	9
		а.	

1 sum should equal 1/3 of sand volume (assuming that sand has void ratio of 1 in 3)

```
University of Michigan, TCAUP
```

Structures II

Slide 5 of 52

Mortar Types

ASTM C91	Specification for Masonry Cement
ASTM C144	Specification for Aggregate for Masonry Mortar
ASTM C270	Specification for Mortar for Unit Masonry
ASTM C780	Method for Preconstruction and Construction Evaluation of Mortars for Plain and Reinforced Unit Masonry
ASTM C1329	Specification for Mortar Cement
ASTM C1586	Standard Guide for Quality Assurance of Mortars

Portland Cement - Hydrated Lime (PCL)

Portland Cement + Lime

Masonry Cement

- Developed between 1918 1932 •
- Proprietary product - performance standards
- Portland Cement + fines (e.g. ground limestone)
- Additives – air entraining, water repellency
- ٠ Simple batching
- "fluffiness" due to air entrainment easy to place •
- ٠ Code limits in high seismic areas

Mortar Cement

- Proprietary product performance standards ٠
- Limitations on the amount of air entrainment
- Specified bond strength •
- Codes recognize as equivalent to PCL mortar

Table 2. Physical Properties of Mortar Cements (ASTM C 1329)

Mortar Cement Type	N	S	м
Fineness, residue on a			
45-µm (No. 325) sieve, maximum %	24	24	24
Autoclave expansion,			
maximum, %	1.0	1.0	1.0
Time of Setting			
Initial Set, minimum, hr.	2	11/2	11/2
Final Set, maximum hr.	24	24	24
Compressive strength minimum, MPa (psi)			
7 days	3.4 (500)	9.0 (1300)	12.4 (1800)
28 day	6.2 (900)	14.5 (2100)	20.0 (2900)
Bond strength minimum, MPa (psi)			
28 days	0.5 (70)	0.7 (100)	0.8 (115)
Air content, volume, %			
Minimum	8	8	8
Maximum	17	15	15
Water retention, flow after suction as % of original flow			
Minimum	70	70	70

Table 3. Physical Properties of Mortar Cement Mortars (ASTM C 270)

Mortar Type	Compressive Strength Minimum, MPa (psi)	Water Retention Minimum, %	Air Content Maximum, %
M	17.2 (2500)	75	12
S	12.4 (1800)	75	12
N	5.2 (750)	75	14*
О	2.4 (350)	75	14*

*When structural reinforcement is incorporated in (cement-lime or) mortar cement mortar, the maximum air content shall be 12%.

Note: Physical properties listed in Table 2 and Table 3 are measured in accordance with prescribed laboratory test procedures. Conformance to compressive strength, bond strength, air content, and water retention requirements of Table 2 is determined using standard testing sand (ASTM C 778). Conformance to Table 3 requirements is established using a masonry sand (ASTM C144) that is intended to be used in construction. Mortar made using masonry sand typically has lower compressive strength, lower air content, and higher water retention as compared to that achieved using standard sand. This fact is reflected in the differences between Table 2 (ASTM C 1329) and Table 3 (ASTM C 270) requirements for these properties.

Mortar Specifying

Proportion Specification

- A recipe for making mortar proportions cement lime sand
- It is simpler e.g. "All masonry mortar shall be Type N (or S or M,) in accordance with ASTM Specification C 270."
- There is a recipe for each type
- This governs if none other is specified (default)

Mortar	Туре	Proportion by Volume (Cementious Materials)					Aggregate Ratio	
		Portland	Masonry	y or Morta	r Cement	Hydrated	(measured in damp, loose	
		Cement	М	S	N	Lime or Lime Putty	conditions)	
Portland-	М	1				1/4		
Cement	S	1				$1/_{4} - 1/_{2}$		
Lime	N	1				¹ / ₂ - 1 ¹ / ₄	$2 \frac{1}{4}$ to 3 times	
	0	1				1 ¹ / ₄ - 2 ¹ / ₂	the sum of the	
Masonry	М	1			1		separate volumes of	
Cement	м		1				cementious	
and	S	1/2			1		materials	
	S			1				
Mortar	N				1			
Cement	0				1			

Mortar Specifying

Property Specification

- Property spec. was developed using laboratory tests
- Not intended for field strength testing
- Requires test results ASTM 270
 - Compressive strength
 - Water retention
 - Air content
 - Is intended for designing or checking a mix to be used
- This is more in line with "engineered masonry"
- ASTM C780 gives standards for field testing
 - Consistency
 - Board life
 - Mortar-aggregate ratio

- Is intended for designing or checking a mix to be used
 - This is more in line with "engineered masonry"
 - ASTM C780 gives standards for field testing
 - Consistency
 - Board life
 - Mortar-aggregate ratio
 - Compressive strength

Table SC-2 — ASTM C270 property specification requirements for laboratory prepared mortar Compressi

sive strength	Mortar	Туре	Average compressive strength at 28 days, psi (MPa)	Water retention min, percent	Air content max, percent	Aggregate ratio (measured in damp, loose conditions)
	Cement-lime	M	2500 (17.2)	75	12	
		S	1800 (12.4)	75	12	
		N	750 (5.2)	75	141	
		0	350 (2.4)	75	141	
	Mortar cement	M	2500 (17.2)	75	12	Not less than 2¼ and not more than 3½ times the sum of the separate volumes of cementitious materials
		S	1800 (12.4)	75	. 12	
		N	750 (5.2)	75	141	
		0	350 (2.4)	75	141	
	Masonry cement	M	2500 (17.2)	75	18	harrie a service bar a britant
	namen an ann ann a Pairte. Tarraige	S	1800 (12.4)	75	18	
		N	750 (5.2)	75	20 ²	an an chaille thais barran anns an 1 The chair a failt anns an chairte an star
		0	350 (2.4)	75	20 ²	

² When structural reinforcement is incorporated in masonry cement mortar, the maximum air content shall be 18 percent.

```
University of Michigan, TCAUP
```

Structures II

Slide 9 of 52

Plastic Properties of Mortar

Workability

- Spread easily with trowel into separations and crevices
- Support weight of masonry units when placed
- Adhere to vertical surfaces
- Readily extrude from mortar joints when mason applies pressure to bring unit into alignment
- Essential for good bond with masonry units

Measuring Workability

- The mason is the best judge by observing response of mortar to trowel
- A flow table will measure the percent increase in diameter of the base of a truncated cone when placed on the flow table and mechanically raised 1/2 in. and dropped 25 times in 15 seconds.
- Typical flow for construction mortars is in the range of 130 to 150%.

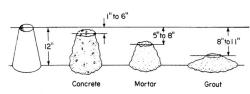


Fig. 2-27. Slump test comparison of concrete, mortar, and masonry grout.

Figure 4.34 Flow table test.

Plastic Properties of Mortar

Water Retentivity

- Measure of ability of mortar under suction to retain its mixing water.
- Gives mason time to place and adjust unit without mortar stiffening.
- Increased through higher lime content, or addition of sand fines within allowable gradation limits.
- Determined by performing flow test after some water has been removed by a specific amount of vacuum.
 - Water retentivity is ratio of initial flow to flow after suction, expressed as a percent.
 - Typically, a water retentivity of 75% is required.

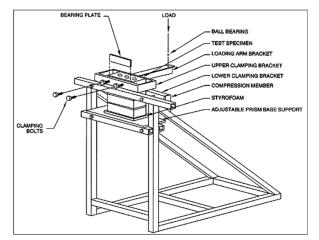
University of Michigan, TCAUP

Masonry

Slide 11 of 52

Properties of Hardened Mortar

Bond


- Most important property!
- Measure strength with a bond wrench
- Increases with cement content
- Because of workability criteria, Type S mortar generally gives maximum bond that can be achieved
- Bond can only be measured with units; thus not a property of mortar alone

Bond Extent

- The amount of surface bonded
- Lack of extent leads to serviceability problems
 - moisture penetration
 - increased air flow
 - increased sound transmission

Increased cement content increases bond strength but reduces bond extent due to loss of workability and increased shrinkage.

More serviceability problems with Type S and Type M mortars.

Properties of Hardened Mortar

Durability

- Increase in air content increases durability (good)
- Oversanding reduces durability
- Overtempering (adding water) reduces durability
 - Mortar should not be used beyond 2 ½ hours !
 Use clean water not from washing tools
- Use of highly absorbent masonry units reduces durability
- Do not over mix (by machine mixer)
- Use clean sand no dirt or clay
- Reduce evaporation place mortar tray in shade or cover
- Use clean tools old mortar residue absorbs water

Extensibility

- The maximum tensile strain at rupture
- Low strength, low moduli mortars exhibit greater plastic tensile strains than high strength, high moduli mortars.
- Mortars with higher strength than necessary should not be used.

Slide 13 of 52

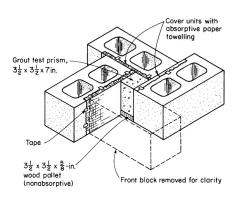
University of Michigan, TCAUP

Masonry

Properties of Hardened Mortar

Compressive Strength

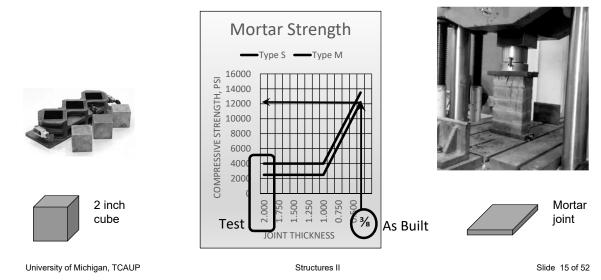
- There is no ASTM standard for field tested mortar strength – It is sometimes mistakenly required
 - ASTM C270 only applies to lab samples
 - Field test samples differ in water content from lab samples so strength is not the same.
- Importance of compressive strength is overemphasized.
 - Bond is generally more important
 - Extent is generally more important
 - Workability is generally more important
 - Water retentivity is generally more important
 - Increases with increase in cement content
- Decreases with increase in lime, sand, water, or air content
- Measured (in lab) using 2 inch cubes
- Mortar in practice (in masonry) is confined by units and in biaxial state of stress (different from lab samples)
- Strength of mortar has only a small effect on prism, or masonry wall strength
 - Tests on clay tile prisms which used an order of magnitude higher mortar compressive strength only doubled the prism strength.
 - Empirical relationship ~ prism strength is proportional to fourth root of mortar compressive strength.



2 inch test cube

Mortar test samples in lab

Mold with four 8 x 8 x 16-in. blocks


Fig. 2-29. ASTM C1019 method of using masonry units to form a prism for compression-testing of masonry grout.

Grout test sample

Properties of Hardened Mortar

Compressive Strength

- Cube test strength is not the same as mortar bed strength.
- Masonry wall strength is measured with a prism test ASTM C1314
 - Prisms are constructed by masons (not test engineers)
 - Prisms are to always be constructed in stack-bond configuration (not running bond)
 - Prisms have aspect rations between 1.3 and 5 with at lease one bed joint
 - Prisms shall always have a full mortar bed (not face-shell only)
 - Joints in prisms shall always be struck flush (not tooled)
 - Prisms should be made for all combinations of variables used e.g. grouted and ungrouted
 - 3 prisms are required for testing
- Rather than measuring strength in the field, it is recommended to use ASTM C780 to evaluate field mortar.
 - Finds relative percentages of the materials used in the mortar (cement sand)
 - Results can be compared with proportions specified

Ingredients of Mortar

Portland Cement

- Contributes to strength and durability of mortar.
- Provides early strength of mortar which is essential for speed of construction.
- Straight PC mortars are not used since they lack plasticity, have low water retentivity, and are harsh.
- PC mortars would give a strong wall, but the wall would be vulnerable to cracking and rain penetration.

Lime

- Provides workability, water retentivity, and elasticity
- Straight lime mortar would have low compressive strength and higher water retentivity
- Lime mortars would have a lower strength, but have a greater resistance to cracking and rain penetration.

Slide 16 of 52

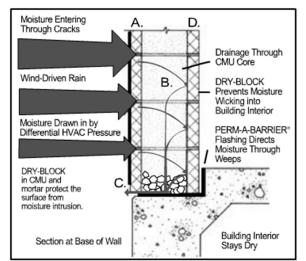
Ingredients of Mortar

Sand

- Natural or manufactured sand can be used
- Void ratio of sand is about 1 in 3.
 - cementitious materials will fill voids in sand
 - Mortar mix is approximately volume of sand.
- Measured in damp loose condition.
 - Dry sand is 1.5-2 times as dense as damp, loose sand.
 - Well-graded sands reduce separation of materials in plastic mortar, which improves workability.
 - Sands deficient in fines produce harsh mortars.
 - Sands with excess fines produce weak mortars; in extreme cases the mortar may not set up.
 - Sands that do not meet gradation requirements of C144 can be used provided resulting mortar can meet property specification.

University of Michigan, TCAUP

Masonry


Slide 17 of 52

Ingredients of Mortar

Admixtures

- Air entraining agents
 - Are generally not needed.
 - Masonry cement typically has air entraining agents.
 - Type A Portland cement is usually used, which has some air entraining additions.
- Coloring agents
 - require careful measuring and mixing
 - Mix with water
- Water repellents
 - Polymeric admixtures (e.g. DRY BLOCK from W.R. Grace).One part is mixed throughout concrete during manufacture of
 - masonry unit.
 - Other part is added to mortar during mixing.
 - Polymers cross link during curing to form resistance to water penetration.

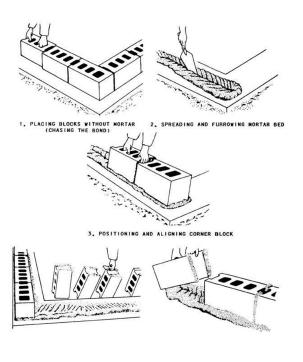
Mixing Mortar

By machine mixer

- Mix 3-5 minutes in mechanical batch mixer.
- Let stand for 3 to 5 minutes.
- Workability is maintained by retempering (adding water)
 - Slightly reduces compressive strength
 - Increases bond strength
- Best results usually obtained if mortar is maintained at workable consistency.
- Discard mortar if it begins to stiffen or after 2.5 hours.

Figure 4.7 Pre-blended mortar silo setup.

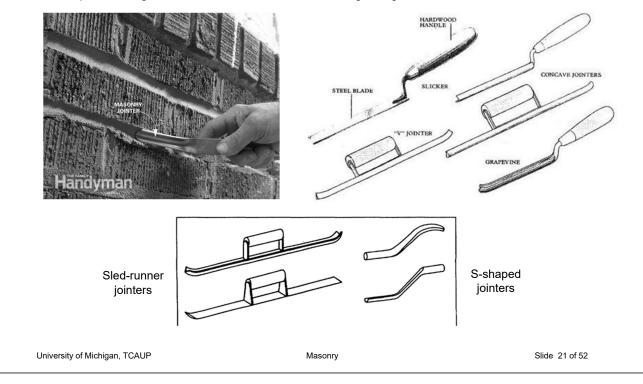
University of Michigan, TCAUP


Masonry

Slide 19 of 52

Placing Mortar and Units

Bed Joints


- Thickness
 - $\frac{3}{8} \pm \frac{1}{8}$ in.
- Starting Course
 - at least $1/_4$ in.
 - Not more than ³/₄ in. when masonry is ungrouted or partially grouted
 - Not more than $1^{1}/_{4}$ *in*. when first course is solid grouted
- Thicker bed joints decrease compressive strength
- Solid units
 - Need solid bed joints
- Hollow units
 - Joints on width of face shell thickness

Placing Mortar and Units

Tooling

- Tool joints with round jointer to create a weather resistant surface.
- Do not disturb units after initially positioned; leads to reduced bond.
- Remove protrusions greater than 1/2 in. that will interfere with grouting.

ASTM C1586 Standard for Quality Assurance of Mortars

Prior to Construction

- ASTM C 270
- Choose proportion or property specifications
- If property, make laboratory mortar specimens
 - Test mortar at a flow between 105% and 115%
 - Representative of moisture content after mortar placed in wall
 - · Units will absorb some water
 - Drying of mortar from environment
 - Use recipe determined from laboratory property tests

During Construction

- ASTM C 780
- Tests for consistency of field produced mortar
 - Strengths will be approximately 70% of lab tests
 - Field mortar has a flow between 130% and 150%
 - More water required for placement of units
- Better test is mortar aggregate ratio
 - Alcohol is used to retard hydration
 - Sieve analysis is performed (back in lab)

Standard Specification for Mortar for Unit Masonry¹

Grout

ASTM C476Specification for Grout for MasonryASTM C1019Sampling and Testing Grout

Grout is high-slump concrete (8-11 in.) made with small size aggregate $(\frac{1}{4}^{"} - \frac{1}{2}^{"})$

- Bonds wythes together in composite masonry
- Bonds reinforcement to masonry
- Increases masonry volume for bearing and fire resistance

Specification

- Proportion
- Property

University of Michigan, TCAUP

Masonry

Slide 23 of 52

Grout

Proportion Specification

Туре	Portland			
	Cement	or Lime Putty	Fine	Coarse
Fine	1	0 - ¹ / ₁₀	$2 \frac{1}{4}$ to 3 times the sum of the volumes of cementitious materials	
Coarse	1	0 - ¹ / ₁₀	$2 \frac{1}{4}$ to 3 times the sum of the volumes of cementitious materials	1 to 2 times the sum of the volumes of cementitious materials

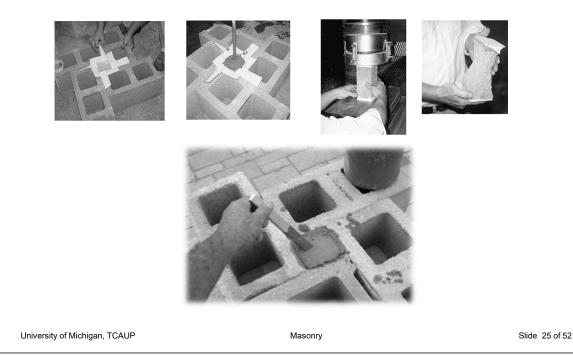
Adapted from ASTM C476. Applicable other standards: Portland cement ASTM C150, blended hydraulic cement ASTM C595, Hydrated lime ASTM C207, lime putty ASTM C5, Aggregate ASTM C404

Coarse aggregate

- 85% pass 3/8 sieve
- 100% pass ½ sieve

Good Qualities

- mix meets requirements of ASTM C476 (Standard Specification for Grout for Masonry)
- Slump between 8 and 11 inches
- W/C in the neighborhood of 0.65 to 0.80

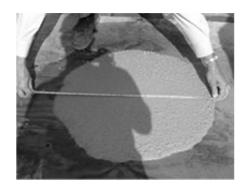


Grout

•

Properties

- Compressive Strength
 - 1000 psi to 2500 psi
 - Or equal to prism strength of masonry
 - Actual in place average ~ 4000 psi


Self-Consolidating Grout

Composition

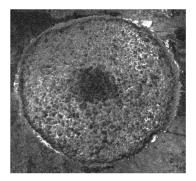
- contain a higher than normal cementitious content
- a high sand/aggregate ratio
- a polycarboxylate-based high-range water-reducing admixture
- an optional viscosity modifying admixture


Slump flow

- Spread of between 24 and 30 in. 1000 psi to 2500 psi
 cone can be filled either upright or inverted
- Visual Stability Index ≤ 1

VSI Value	Criteria
0 = Highly Stable	No evidence of segregation or bleeding.
1 = Stable	No evidence of segregation and slight bleeding observed as sheen on the concrete mass.
2 = Unstable	A slight mortar halo \leq 0.5 in. and/or aggregate pile in the center of the concrete mass.
3 = Highly unstable	Clearly segregating by the evidence of a large mortar halo > 0.5 in. and/or a large aggregate pile in the center of the concrete mass.

Self-Consolidating Grout Visual Stability Index


VSI = 0 – Concrete Mass is Homogeneous and No Evidence of Bleeding.

VSI = 2 – Evidence of a Mortar Halo and Water Sheen.

VSI = 1 – Concrete Shows Slight Bleeding Observed as a Sheen on the Surface.

VSI = 3 – Concentration of Coarse Aggregate at Center of Concrete Mass and Presence of a Mortar Halo.

University of Michigan, TCAUP

Masonry

Slide 27 of 52

Grout Pour and Lift Heights

Pour Height

- Total height of masonry to be grouted prior to erection of additional masonry.
- A pour can consist of several lifts.
- Maximum pour height is 24 ft. with cleanouts

Lift Height

- Height of grout placed in a single operation.
- Limited to 5.33 ft. (64 in. or 8 courses)
 - OR 12.67 ft (152 in. or 19 courses) IF
 - masonry has cured 4 hrs
 - slump is between 10 and 11 in.
 - no intermediate bond beams between top and bottom of pour height

Consolidation

- Pour height < 12 in.
 - Puddling Stick (hard rubber tamper 6" x 1" x1/2")
- Pour height > 12 in.
 - Mechanical vibration
 - Reconsolidate after initial water loss

Placement of Reinforcement

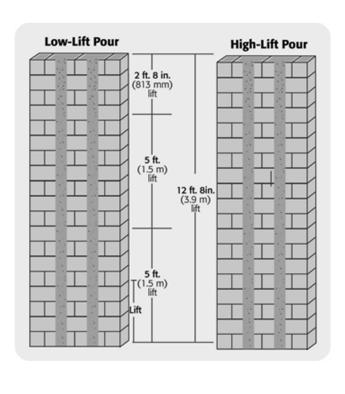
- Place and secure rebar prior to grout placement.
- Typically secure rebar at every 200 bar diameters
 about 8 ft. for a #4 bar

Cleanouts

Required with high lift grouting.

Lift Height

Pour Height


Grout Pour and Lift Heights

Pour Height

- Total height of masonry to be grouted prior to erection of additional masonry.
- A pour can consist of several lifts.
- Maximum pour height is 24 ft. with cleanouts

Lift Height

- Height of grout placed in a single operation.
- Limited to 5.33 ft. (64 in. or 8 courses)
- OR 12.67 ft (152 in. or 19 courses) IF
 - masonry has cured 4 hrs
 - slump is between 10 and 11 in.
 - no intermediate bond beams between top and bottom of pour height

University of Michigan, TCAUP

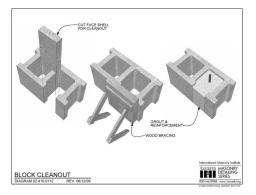
Masonry

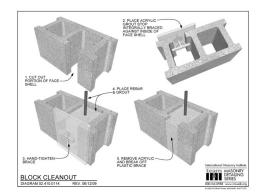
Slide 29 of 52

PROVIDE CLEANOUT OPENINGS

32 IN. MAX. SPACING BETWEEN CLEANOUT OPENINGS FOR SOLID GROUTED WALLS

IN., VERTICAL

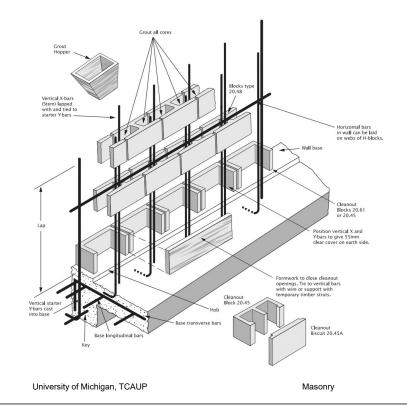

Cleanouts


Requirements

- Required when grout pour height exceeds 5 ft. 4 in.
- Construct so space to be grouted can be cleaned and inspected.
- In solid grouted masonry, space cleanouts horizontally at a maximum of 32 inch on center.
- Minimum opening dimension is 3 inch
- After cleaning, close cleanouts with closures braced to resist grout pressure.

Fluid Pressure on Cleanout

- Grout exerts an equivalent fluid pressure of about 120 pcf.
- So, for example, the pressure at the base of a 5 foot pour is 600 psf.



Cleanouts

Fluid Pressure on Cleanout

- Grout exerts an equivalent fluid pressure of about 120 pcf.
- So, for example, the pressure at the base of a 5 foot pour is 600 psf.

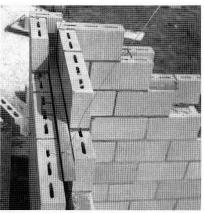


Fig. 6-47. To keep the cavity clean, a wood strip is laid across the ties in the cavity.

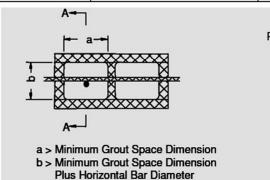
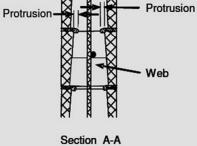


Fig. 6-48. The wood strip is lifted to remove mortar droppings.


Slide 31 of 52

Grout Space Requirements

Grout type	Maximum grout pour height (ft.)	Minimum clear grout space dimensions (in. x in.)		
Fine	1 5.33 12.67 24	1 ½ x 2 2 x 3 2 ½ x 3 3 x 3		
Coarse	1 5.33 12.67 24	1 ½ x 3 2 ½ x 3 3 x 3 3 x 4		

Plus Horizontal Protrusions

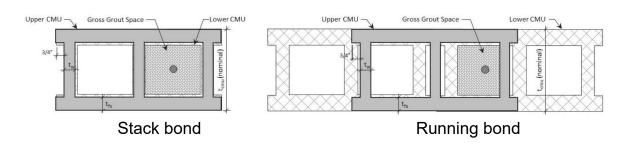
Grout Space Requirements

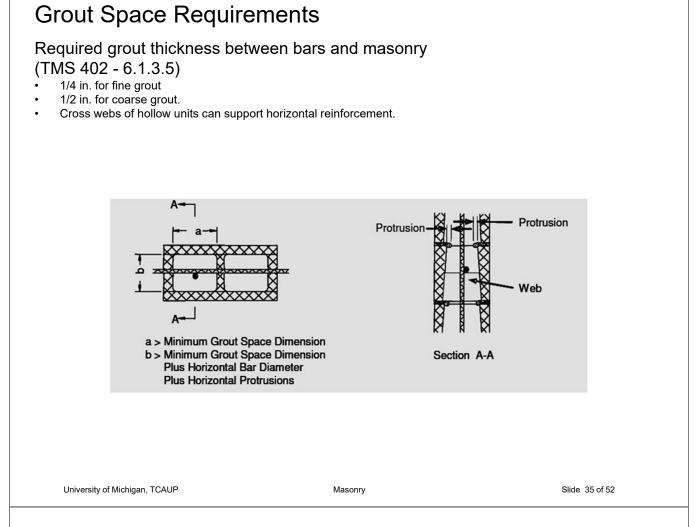
Area of vertical reinforcement

- ≤ 6% of grout space (TMS 402 6.1.2.4)
- UBC allowes 12% of area at splices.
- Strength design limits:
 - 4% of cell area (TMS 402 9.3.3.1)
 - ¼ least clear dimension
 - #9 max bar size
- IBC allows 8% at splices.
- Note the difference in above: grout space vs. cell area

Grout type	Maximum grout pour height (ft.)	Minimum clear grout space dimensions (in. x in.)
Fine	1 5.33 12.67 24	1 ½ x 2 2 x 3 2 ½ x 3 3 x 3
Coarse	1 5.33 12.67 24	1 ½ x 3 2 ½ x 3 3 x 3 3 x 4

University of Michigan, TCAUP

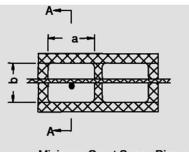

Masonry


Slide 33 of 52

Grout Space Requirements example

8 in. CMU

- Thickness: assume 1.25 in. face shell and 0.25 in. taper
 - 7.625 2(1.25) 2(0.25) = 4.625 in.
- Length: assume 1 in. webs
 - Stack bond: [15.625 2(0.75) 3(1) 3(0.25)]/2 = 5.1875 in.
 - Running bond: (0.5+0.25/2+5.1875) (0.375/2+0.75+1) = 3.875 in.
- Stack bond: Area = 4.625(5.1875) = 23.99 in.2
 - 4% cell area = 0.04(23.99) = 0.96 in.2 (#8 bar)
- Running bond: Area = 4.625(3.875) = 17.92 in.2
 - 4% cell area = 0.04(17.92) = 0.72 in.2 (#7 bar)


Grout Space Requirements

Bond beam Reinforcement - for 8 in. CMU (a = 5.8175 in.)

Bond beam bars	ʻb' (in.)	Area (in. ²)	6% Area (in.²)	Max pour height (<u>ft</u>)
1 - #4	3 1/8	18.18	1.09 (#9)	24
2 - #4	2 5⁄8	15.27	0.92 (#8)	5.33
1 - #5	3	17.45	1.05 (#9)	24
2 - #5	2 3⁄8	13.82	0.83 (#8)	1

Example: calculation of b

Block width	7.625
Face Shell	2(1.25) = 2.5
Taper	2(0.25) = 0.5
Protrusions	2(0.5) = 1.0
Bar diameter (1 - #4)	0.5
TOTAL 7.625-2.5-0.5-1	.0-0.5 = 3.125

a > Minimum Grout Space Dimension b > Minimum Grout Space Dimension Plus Horizontal Bar Diameter Plus Horizontal Protrusions

Grout Keys

Form grout keys between pours.

Form grout keys between lifts if the first lift is permitted to set prior to placement of subsequent lifts.

Form a grout key by terminating grout a minimum of $1\frac{1}{2}$ inch below a mortar joint.

Do not form grout keys within beams.

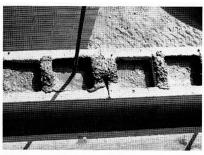
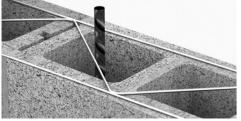
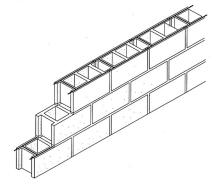


Fig. 6-60. Grouting is stopped about 1 in. below the top of the block to form a key with the next lift.

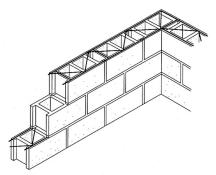
University of Michigan, TCAUP

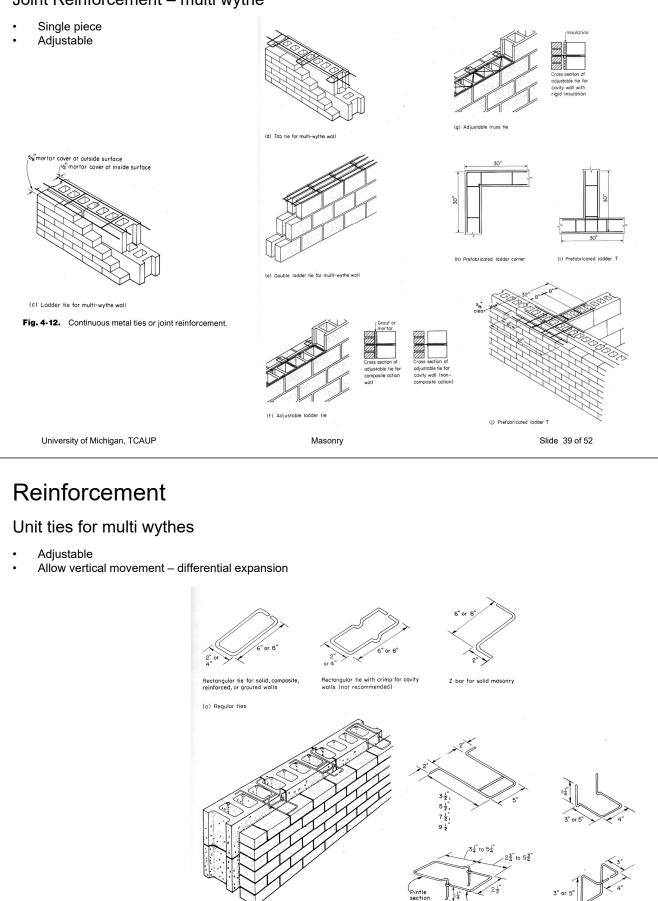
Masonry


Slide 37 of 52


Reinforcement

Joint Reinforcement - single wythe

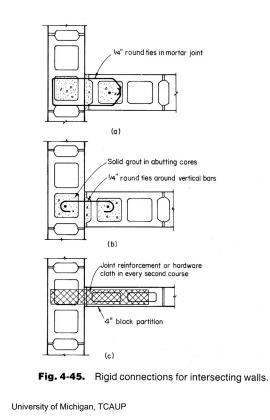

- Ladder type
- Truss type



(a) Ladder type joint reinforcement for single-wythe wall

(b) Truss type joint reinforcement for single-wythe wall

Joint Reinforcement - multi wythe


Masonry

(b) Adjustable ties

Fig. 4-11. Unit metal ties.

Unit ties for wall bracing

Provide rigid connection for intersecting walls

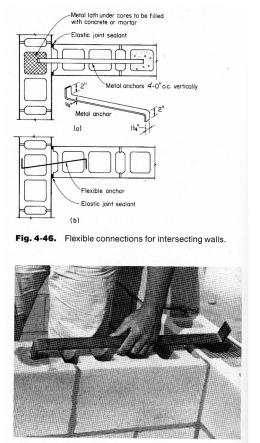
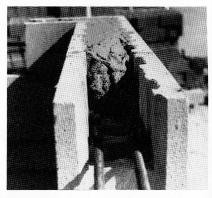
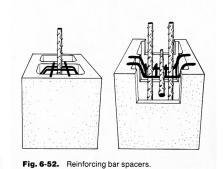


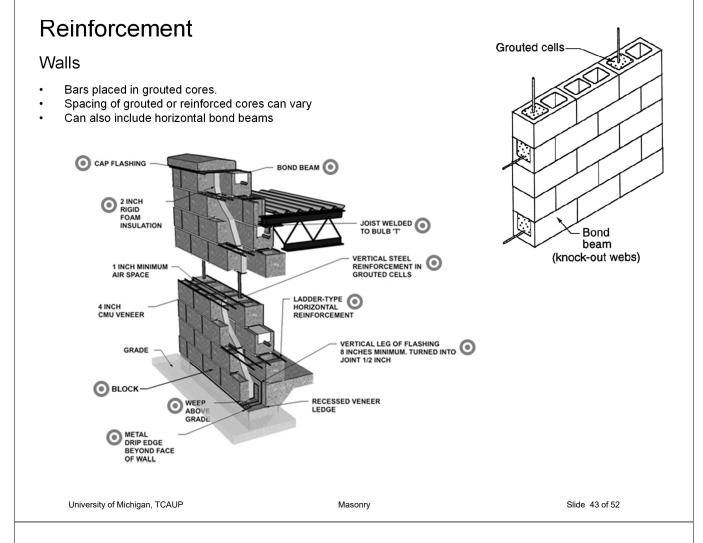
Fig. 4-47. Steel tiebar provides lateral support to wall at right.


Slide 41 of 52

Reinforcement

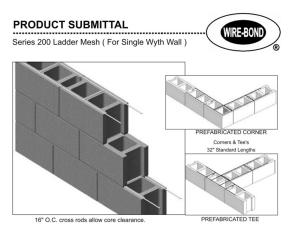
Beams


- Bars placed in bottom U-shaped unit, or knockout bond beam unit.
- Mesh or lash over open cores
- Cross webs of hollow units can support horizontal reinforcement.



Masonry

Fig. 6-54. Horizontal reinforcing bars positioned in a bond beam that will be solidly grouted.



Bar and wire sizes

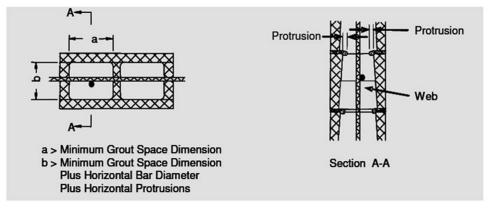
Designation	Diameter (in.)	Area (in. ²)
W1.1 (11 gage)	0.121	0.011
W1.7 (9 gage)	0.148	0.017
W2.1 (8 gage)	0.162	0.021
W2.8 (3/16 wire)	0.187	0.028
W4.9 (1/4 wire)	0.250	0.049
#3	0.375	0.11
#4	0.500	0.20
#5	0.625	0.31
#6	0.750	0.44
#7	0.875	0.60
#8	1.000	0.79
#9	1.128	1.00
#10	1.270	1.27
#11	1.410	1.56

Wire Size	Side Rods	Cross Rods	
Standard	9 gauge	9 gauge	
Heavy Duty	3/16 in.	9 gauge	
Extra Heavy Duty	3/16 in.	3/16 in.	

Tensile strength: 80,000 psi Yield strength: 70,000 psi (ASTM A1064/A1064M)

Requirement	Provision	TMS 402 Reference
	Maximum size: #11 (Strength design: #9)	6.1.2.1, 9.3.3.1
	$d_b \leq 1/2$ of least clear dimension	6.1.2.2, 9.3.3.1
Size of	(Strength design: $d_b \le 1/4$ of least clear dimension)	
reinforcement	Area of vertical reinforcement ≤ 6% grout space	6.1.2.4, 9.3.3.1
	(Strength design: ≤ 4% cell area)	
	$d_b \leq 1/8$ least nominal dimension	6.1.2.5
	Clear distance between bars \geq max of { d_b , 1 in.}	6.1.3.1
	Columns and pilasters:	6.1.3.2
Placement of	Clear distance between bars \geq max of { 1.5 d_b , 1.5 in.}	
reinforcement	Thickness of grout between reinforcement and masonry	6.1.3.5
	Coarse grout: ½ in.	
	Fine grout: 1⁄4 in.	
	Masonry exposed to earth or weather:	
Protection of	#5 and smaller: 1½ in.	
reinforcement: cover	larger than #5: 2 in.	6.1.4.1
00101	Masonry not exposed to weather: $1\frac{1}{2}$ in.	

```
University of Michigan, TCAUP
```


Masonry

Slide 45 of 52

Reinforcement - example

Determine the maximum size bar that can be placed in an 8 inch CMU.

- From cell area requirements (4%): face shells↓
 - 'b': width is 7.625 2(1.25) = 5.125 in.
 - 'a' : length is 6.31 in.
 - Cell Area = 32.3 in.²
 - 0.04(32.3in.²) = 1.29in.² 2-#7, 1-#9
- $d_b \le 1/4$ of least clear dimension: face shells \downarrow \downarrow protrusions
 - least clear dimension = 7.625 2(1.25) 2(0.5) = 4.125 in.
 - ¼ (4.125 in.) = 1.03 in. #8 bar
- $d_b \le 1/8$ least nominal dimension: 1/8 (8 in.) = 1 in. #8 bar

Wire Reinforcement

Requirement	Provision	TMS 402 Reference	
Size of wire Minimum size: W1.1 Maximum size: 1/2 joint thickness			
Protection of wire	Cover: Exposed to weather: 5/8 in. Not exposed to weather: 1/2 in. Protection: Mean relative humidity > 75%: stainless steel, hot-dipped galvanized coating, or epoxy coating Mean relative humidity ≤ 75%: mill galvanized, hot-dip galvanized, or stainless steel	6.1.4.2	

University of Michigan, TCAUP

Masonry

Slide 47 of 52

Reinforcement

Development Length

Condition	Provision	TMS 402 Reference
Bars in grouted clay masonry and concrete masonry	$l_{d} = \frac{0.13d_{b}^{2}f_{y}\gamma}{K\sqrt{f'_{m}}} \qquad \text{Eq. (6-1)}$ $K = \text{min of \{masonry cover, clear spacing between adjacent splices, 9d_{b}\}}$ $\gamma = \begin{cases} 1.0 \text{ for #3 through #5} \\ 1.3 \text{ for #6 and #7} \\ 1.5 \text{ for #8 and greater} \end{cases}$	6.1.5.1.1
Hooks in tension	Equivalent embedment length: $l_d = 13d_b$ Eq. (6-2)	6.1.5.1.3
Wires in tension	$l_d = 48d_b$ Eq. (6-3)	6.1.5.2
Epoxy-coated wires and bars	Development length increased by 50%	6.1.5.1.1 6.1.5.2

 l_d should be multiplied by 1.5 for epoxy coated bars

Splice Length

Condition	Provision	TMS 402 Reference	
Lap splices of bar reinforcement	max{ <i>l_d</i> (Eq. 6-1), 12 in.}	6.1.6.1.1.1	
Noncontact lap splices	Transverse spacing ≤ min{1/5 lap length, 8 in.}	6.1.6.1.1.3	
Welded splices of bar reinforcement	6.1.6.1.2		
Mechanical splices of bar reinforcement	Develop $1.25f_y$	6.1.6.1.3	┝┼╂┺┤
End-bearing splices (compression)	Bar ends within 1.5° to right angle of axis Fitted to within 3° after assembly	6.1.6.1.4	┆┨╹┆ ┿┲╂┿
Lap splices of wire	max{ 48d _b (Eq. 6-3), 6 in.}	6.1.6.2.1	
Welded splices of wire	Develop 1.25 <i>f</i> _y	6.1.6.2.2	│ <mark>│ ┦╹</mark> ┨ ┤
Mechanical splices of wire	Develop 1.25f _y	6.1.6.2.3	

University of Michigan, TCAUP

Masonry

Slide 49 of 52

Reinforcement

Lap Splice Length

	Required lap splice length (inches)								
Bar Size	<i>f'_m</i> = 2000 psi		<i>f'_m</i> = 2500 psi			<i>f'_m</i> = 3000 psi			
	8 in. Center	12 in. Center	2 in. cover	8 in. Center	12 in. Center	2 in. cover	8 in. Center	12 in. Center	2 in. cover
#3	12	12	12	12	12	12	12	12	12
#4	12	12	22	12	12	20	12	12	18
#5	20	12	34	18	12	31	16	12	28
#6	37	24	64 [54]	33	21	57 [54]	30	19	52
#7	51	32	87 [63]	46	29	78 [63]	42	26	71 [63]
#8	79 [72]	49	131 [72]	71	44	117 [72]	65	40	107 [72]
#9	-	63	166 [81]	-	57	149 [81]	-	52	136 [81]
#10	-	82	211 [90]	-	73	189 [90]	-	67	172 [90]
#11	-	102 [99]	260 [99]	-	91	233 [99]	-	83	212 [99]

Values in square brackets are $72d_b$, the IBC requirement. Values only given if less than TMS 402.

Lap Splice Length – example

Determine the required lap splice length for a #5 Grade 60 reinforcement bar placed in the center of an 8 in. CMU wall. Assume f'_m = 2000 psi.

- Masonry cover: $\frac{t_{sp}}{2} \frac{d_b}{2} = \frac{7.625 \text{ in.}}{2} \frac{0.625 \text{ in.}}{2} = 3.50 \text{ in.}$
- Determine *K*: $K = \min of \{cover, 9d_b\} = \{3.50in., 9(0.625in.) = 5.625in.\}$ = 3.50in.
- Determine γ : for a #5 bar, $\gamma = 1$
- Determine l_d : $l_d = \frac{0.13d_b^2 f_y \gamma}{K \sqrt{f'_m}} = \frac{0.13(0.625in.)^2(60000psi)(1.0)}{3.50in.\sqrt{2000psi}} = 20in.$
- Splice length: max of $\{l_d, 12in.\} = \max of \{20in., 12in.\} = 20 in.$

Masonry

Slide 51 of 52

#