Concrete Masonry

- CMU Production
- Size and Application
- Performance
- Calcium Silicate Units
- · Glass Units
- Natural Stone Units
- Autoclaved Aeriated Concrete Units

Ennis House Frank Lloyd Wright 1924

University of Michigan, TCAUP

Masonry

Slide 1 of 30

Ennis House

- Los Angeles, Calif.
- Frank Lloyd Wright
- 1924
- Mayan Revival
- Textile Block

University of Michigan, TCAUP

Masonry

Slide 4 of 30

Concrete Masonry Units (CMU)

4 x 8 x 16

Masonry

6 x 8 x 16

8 x 8 x 16

nominal dimensions thickness × height × length concrete block

(d)

(e)

(f)

University of Michigan, TCAUP

10×8×16

12×8×16

Masonry

4.5 Horizontal reinforcement required for masonry not laid in running bond of 0.00028A_a, placed at a maximum spacing of 48 in. o.c. in horizontal mortar joints or in bond beams.

 $0.00028(7.625)(16) = 0.034in^2$

Use 9 gage (W1.7) at 16 in. o.c.

Rebar Positioners

Placed in mortar joints Concrete Masonry Units Placed in cells

8

Clay Units – Manufacture

Ingredients

- Portland cement
- aggregate
- Water
- · Blast furnace slag
- Fly ash
- Air entrainment
- · Workability
- color

The weigh batcher is used to measure the proper amounts of each material.

University of Michigan, TCAUP

The concrete comes off a conveyer and is forced into molds. The rotating brushes remove loose material.

Masonry

Slide 11 of 30

CMU – Manufacture

Molding

- Zero slump
- Press molded
- Vibrated
- Steel molds tapered for release
- 2000 units per hour

Curing

Steam autoclave – 18 hrs

CMU – Strength

Classification

- Load bearing CMU
- Non-loadbearing facing
- Strength 2000 to 4000 psi

Tensile strength

- Modulus of rupture or split
- 10% to 20% of compression

Absorption lb/ft³

- Related to durability
- And shrinkage
- 24 hour immersion
- No IRA test
- 3 unit average
- Individual

Table 4.3 Strength and Absor (A)	ption Requirements for Co	oncrete Masonry Units
	Maximum water	Minimum net area

Weight	Oven-dry density of concrete, lb/ft ³ (kg/m ³)	absorption, lb/ft ³ (kg/m ³)		compressive strength, psi (MPa)	
classification	Average of 3 units	Average	Individ	Average	Individ
		01.3	ual	of 3	ual
		units	unit	units	unit
Lightweight	Less than 105	18 (288)	20 (320)	2,000	1,800
	(1,680)		. ,	(13.8)	(12.4)
Medium weight	105 to less than 125 (1,680	15 (240)	17 (272)	2,000	1,800
N	- 2,000)			(13.8)	(12.4)
Normal weight	125 (2,000) or	13 (208)	15 (240)	2,000	1,800
	more			(13.8)	(12.4)

 Table 4.4 Strength and Absorption Requirements for Concrete Facing brick

 (ASTM C1634 Standard)

	, ie i m	e lee l'etalle	iuiu)		
Density	Oven-dry density of concrete, lb/ft ³ (kg/m ³)	Maximum water absorption, lb/ft ³ (kg/m ³)		Minimum net area compressive strength, psi (MPa)	
classification	Average of 5 units	Average of 3 units	Individ ual unit	Average of 3 units	Individ ual units
Lightweight	Less than 105 (1,680)	15 (240)	17 (272)	3,500 (24.1)	3,000 (20.7)
Medium weight	105 to less than 125 (1,680 - 2,000)	13 (208)	15 (240)	3,500 (24.1)	3,000 (20.7)
Normal weight	125 (2,000) or more	10 (160)	12 (192)	3,500 (24.1)	3,000 (20.7)

University of Michigan, TCAUP

Masonry

Slide 13 of 30

CMU – Performance

Durability

- Higher strength
- Lower absorption

Expansion

- 5 x10⁻⁶/°F (normal weight)
- 4 x10⁻⁶/°F (lightweight)

Shrinkage

- Like cement
- Drying shrinkage loss of water. Will regain if water is added, therefore usually not wet before use.
- Carbonation shrinkage due to hydration over time – not reversible

Creep

- A bit less than concrete
- Lightweight CMU more than normal
- Mostly within the first year

Table 4.5 Typical Shrinkage of Concrete Masonry Products.

Product	Aggregate	Curing	Total Shrinkage, %	
Block	Dense gravel Dense gravel Lightweight	Low pressure steam Autoclave Low pressure steam	0.02-0.05 0.01-0.04 0.04-0.08	
Brick	Dense	Low pressure steam	0.02-0.05	

Slide 14 of 30

Clay Units vs. CMU – Performance

Property		Clay Masonry	Concrete Masonry
Unit strength		8000 psi	2000 psi
Type N mortar	f'_m	2440 psi	1750 psi
Type N montai	E_m	1.70x10 ⁶ psi	1.58x10 ⁶ psi
Type Mor Smortar	f'_m	2920 psi	2000 psi
Type IN OF S Mortal	E_m	2.05x10 ⁶ psi	1.80x10 ⁶ psi
Property		Clay Masonry	Concrete Masonry
Modulus of Elasticity,	E_m	$700 f'_m$	$900f'_m$
Shear Modulus, G		$0.4E_m$	$0.4E_m$
Coefficient of Creep		$\frac{0.7 \ x 10^{-7}}{psi}$	$\frac{2.5x10^{-7}}{psi}$

Typical Values

University of Michigan, TCAUP

Masonry

Slide 15 of 30

Calcium Silicate Units

Mainly in Europe and Australia

Formed and cured similar to CMU

- Mix of sand + hydrated lime
- Tightly grained
- Sizes follow bricks or other stone
- Generally 100% solid
- Compression by grade: 3500 to 8000 psi (or higher)

Arriscraft (in US)

Table 4.6 Physical Requirements for Calcium Silicate Face Brick (from Ref. 4.34).

Brick grade	Minimum compressive strength (brick tested flatwise), psi (MPa), average gross area		Water absorption maximum, lb/ft ³
	Average of 3	Individual	(kg/m ³)
SW	5500 (37.9)	4500 (31.0)	15 (240)
MW	3500 (24.1)	3000 (20.7)	18 (288)

Natural Stone

	Castagiant actor		les and Finishes of Building Stone (from Ref. 4.38).
Mainly non-loadbearing veneer Three basic types Sedimentary Metamorphic	1. Sedimentary	Sandstone Limestone Dolomite	Finishes Smooth (machine finished by saw, grinder or planer) Machine tooled (with uniform grooves) Chat sawn (non-uniform) Shot sawn (irregular and uneven markings) Split face (concave-convex) Rock face (convex)
• Igneous	2. Metamorphic	Marble Serpentine Onyx Slate ¹ Quartzite ¹ Gneiss ² Travertine ⁴	Sanded Honed Polished Wheel abraded Bush-hammered Split face Rock face
	3. Igneous	Granite Syenite Diorite ³ Gabbro Andesite Basalt	Sawn Honed Polished Machine tooled (4- or 6-cut, chiseled, axed, pointed, etc.) Flamed Sand finished Split face Rock face
	 Slate and quartzite ca Gneiss will take all of Diorite will not take f Travertine is actually filled, partially filled, 	nnot be polished. î the finishes of marble <i>i</i> lame finish. <i>v</i> a limestone but is cla and unfilled.	and may also be flame finished. ssified with marbles for surface finishes. Travertine finishes include
University of Michigan, TCAUP	Masonry		Slide 17 of 30

Natural Stone

Mainly non-loadbearing veneer

Three basic types

- Sedimentary
- Metamorphic
- Igneous

Group of stone	Maximum absorption by weight, %	Minimum density, lb/ft ³ (kg/m ³)	Minimum compressive strength, psi (MPa)	Minimum modulus of rupture, psi (MPa)	ASTM standard
Limestone	12 7.5 3	110 (1760) 135 (2160) 160 (2560)	1800 (12) 4000 (28) 8000 (55)	400 (2.9) 500 (3.4) 1000 (6.9)	C568 ^{4.39}
Sandstone	8 3 1	125 (2000) 150 (2400) 160 (2560)	4000 (27.6) 10000 (69) 20000 (139)	350 (2.4) 1000 (6.9) 2000(13.9)	C616 ^{4.40}
Granite	0.4	160 (2560)	19000 (131)	1500 (10.3)	C615 ^{4.41}
Marble	0.2	144 (2305) to 162 (2595)	7500 (52)	1000 (6.9)	C503 ^{4.42}

Table 4.8 Physical Requirements of Building Stone

Glass Block Characteristics Non-loadbearing ٠ Interior of exterior BUBBLE BROMO CLEAR • Reduced UV transmission • Natural daylighting Solar reflection • Fire resistance • • Thermal insulation DIAMOND ICEBERG OCEAN VIEW 37 QUADRA WAVE PRISTAL University of Michigan, TCAUP Masonry Slide 19 of 30

Glass Block

Characteristics

- Non-loadbearing
- Interior of exterior
- Reduced UV transmission
- Natural daylighting
- Solar reflection
- Fire resistance
- Thermal insulation

Ports - 1961 - Shanghai

Glass Block

- Bruno Taut
- Glass Pavilion
- Cologne Werkbund Exhibition

University of Michigan, TCAUP

Masonry

Slide 21 of 30

Glass Block

- Bruno Taut
- Glass Pavilion
- 1914

University of Michigan, TCAUP

Aerated Autoclaved Concrete - AAC

Also called: Autoclaved Cellular Concrete (ACC) Autoclaved Lightweight Concrete (ALC) autoclaved concrete cellular concrete porous concrete Brand names: Aercon Hebel Block Ytong Aircrete

9 10 11

Cast and autoclaved in large slabs then cut to size Lightweight, good thermal resistance, transpires moisture, fireproof, sound insulation, easily cut on site, erected as masonry

University of Michigan, TCAUP

Thermalite Magicrete BCA

Masonry

Slide 23 of 30

1 25.

Autoclaved Aeriated Concrete (AAC)

Used predominately in Europe Developed by Dr. Johan Axel Eriksson in mid- 1920s in Sweden as "Ytong" since 1943, Hebel blocks in Germany Current largest production in China Lighter weight Better insulation value Better fire resistance Better moisture transmission Larger blocks for faster erection Can be shaped on site

University of Michigan, TCAUP

Masonry

Slide 24 of 30

Autoclaved Aeriated Concrete (AAC)

Density - 20 to 50 PCF (floats)

Compressive strength - 300 to 900 PSI

Allowable Shear Stress - 8 to 22 PSI

Thermal Resistance - 0.8 to 1.25 R/ IN

University of Michigan, TCAUP

Masonry

Slide 25 of 30

AAC Units

AAC Units

'Porenbeton'

Dimensions	Standard (In)	Semi-Jumbo (In)	Jumbo (In)	O-Block (In)	U-Block (In)
Length	24	24	39-3/8	24	24
Height	8	16	24	8	8
Thickness	4 to 12	6 to 12	6 to 12	6 to 12	6 to 12
Class		AAC-2 and A	AC-4		AAC-2
Thicknesses		4,5,6,7,8	, 10 and	12 In	

University of Michigan, TCAUP

Masonry

Slide 27 of 30

Autoclaved Aeriated Concrete (AAC)

Easily shaped on site

Thin mortar bed - 1/8" (1mm to 3mm)

Tools for placement (below)

Autoclaved Aeriated Concrete (AAC)

Larger blocks so faster layup – e.g. 8"x8"x24"

Panel layup with onsite crane

9.4" x 4.4"	Steinmaß 240 mm x
AAC block	Porenbeton-Planst
8 blocks / m2 19.6" x 9.8"	8 Steine pro 1 m² Wa Steinmaß 499 mm x
AAC panel 1.6 panels / m2 39.3" x 24.5"	Porenbeton-Planel 1,6 Steine pro 1 m² V Steinmaß 999 mm x

Clay block 32 blocks / m2 9.4" x 4.4"	Konventionelles Mauerwerk: 22 Steine 2 DF/3 DF für 1 m² Wand; Steinmaß 240 mm x 113 mm x d
AAC block	Porenbeton-Plansteine:
8 blocks / m2 19.6" x 9.8"	8 Steine pro 1 m ² Wand; Steinmaß 499 mm x 249 mm x d

University of Michigan, TCAUP

Masonry

Slide 29 of 30

Autoclaved Aeriated Concrete (AAC)

Finish with stucco

Abb. 2.4.4-1 Anbringen der Sockelabschluß- und Eckschutzschiene zur Sicherung der Mauerwerkskanten

Abb. 2.4.4-3 Auftrag der Deckschicht

Abb. 2.4.4-2 Auftrag des Grundputzes von Hand

Abb. 2.4.4-4 Verreiben der Putzoberfläche mit Filzbrett oder Schwammscheibe

