Clay Masonry

- Brick Production
- · Size and Application
- Performance
- Details
- · Clay Tile

University of Michigan, TCAUP Masonry Slide 1 of 30

Chilehaus

- Hamburg, Germany
- · Architect: Fritz Höger
- 1922-1924
- German Expressionism
- Oldenburg bricks
- Build for shipping magnate Henry B. Sloman

University of Michigan, TCAUP Masonry Slide 2 of 30

Chilchaus

- Hamburg, Germany
- Architect: Fritz Höger
- 1922-1924
- German Expressionism
- Oldenburg bricks
- Build for shipping magnate Henry B. Sloman


University of Michigan, TCAUP Masonry Slide 3 of 30

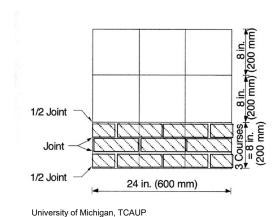
Chilehaus

- Hamburg, Germany
- Architect: Fritz Höger
- 1922-1924
- German Expressionism
- Oldenburg bricks
- Build for shipping magnate Henry B. Sloman

University of Michigan, TCAUP

Masonry Slide 4 of 30

Clay Units - Brick & Tile


Nomenclature

Six positions in a wall

- Stretcher
- Header
- Rowlock stretcher
- Rowlock
- Soldier
- Sailor

Sizes

- 8 inch grid
- 3/8 inch mortar joint

ROWLOCK STRETCHER ROWLOCK

3/8" Mortar Joint Between Bricks (Most Common)

SAILOR

HEADER

SOLDIER

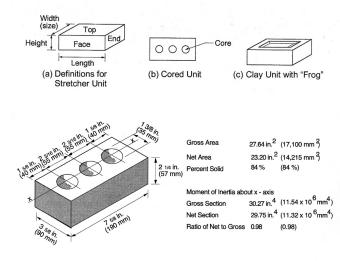
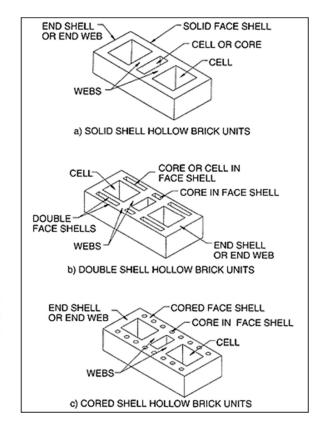
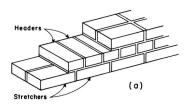
STRETCHER

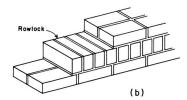
BRICK TYPE	SPECIFIED SIZE D X H X L (INCHES)	NOMINAL SIZE D X H X L	VERTICAL COURSE
Standard	3 5/8 × 2 1/4 × 8	Not modular	3 courses = 8"
Modular	3 5/8 × 2 1/4 × 7 5/8	4 × 2 2/3 × 8	3 courses = 8"
Norman	3 5/8 × 2 1/4 × 11 5/8	4 × 2 2/3 × 12	3 courses = 8"
Roman	3 5/8 × 1 5/8 × 11 5/8	4 × 2 × 12	1 course = 2"
Jumbo	3 5/8 × 2 3/4 × 8	4×3×8	1 course = 3"
Economy	3 5/8 × 3 5/8 × 7 5/8	4 × 4 × 8	1 course = 4"
Engineer	3 5/8 × 2 13/16 × 7 5/8	4 × 3 1/5 × 8	5 courses = 16"
King	2 3/4 × 2 5/8 × 9 5/8	Not modular	5 courses = 16"
Queen	2 3/4 × 2 3/4 × 7 5/8	Not modular	5 courses = 16"
Utility	3 5/8 × 3 5/8 × 11 5/8	4 × 4 × 12	1 course = 4"

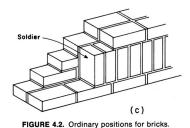
Masonry Slide 5 of 30

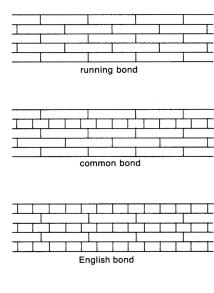
Clay Units - Brick & Tile Solid vs. Hollow

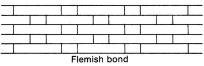
- Solid < 25% void Hollow > 25% void
- · Gross area from outer dimensions
- · Net area is minus the voids
- Core is a void < 1.5 inches
- Cell is a void > 1.5 inches
- Frog is a depression
- Ears are extensions at ends

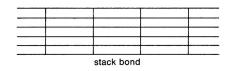




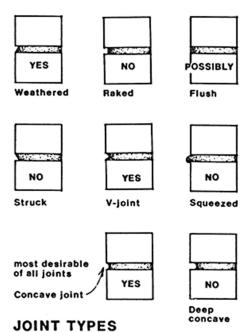

Figure 4.3 Effect of percent solid on section properties of clay masonry units.



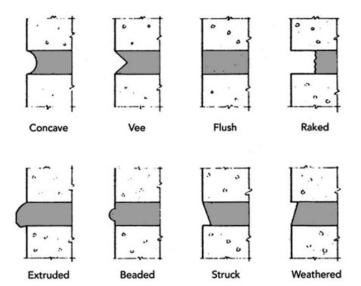

Clay Units – Brick & Tile


Brick bond patterns




University of Michigan, TCAUP

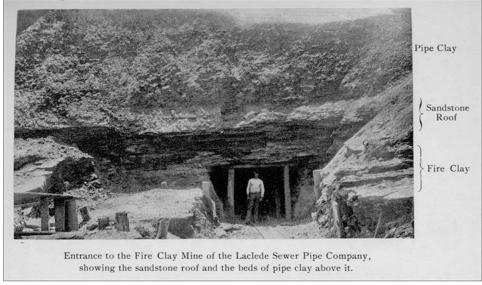
Masonry


Slide 7 of 30

Clay Units – Brick & Tile

Mortar joint types

Considering moisture penetration


Architectural types

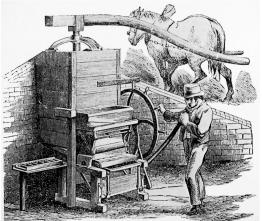
Clay Units – Manufacture

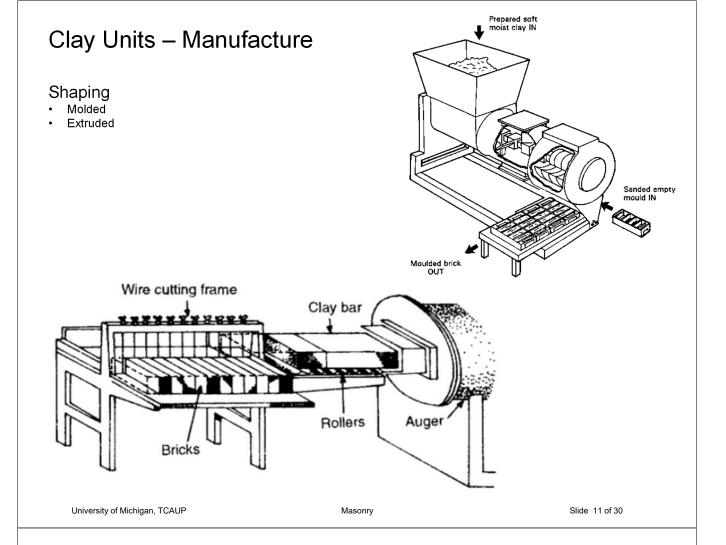
Ingredients • Surface clays

- Shale clays
- Fire clays

University of Michigan, TCAUP Masonry Slide 9 of 30

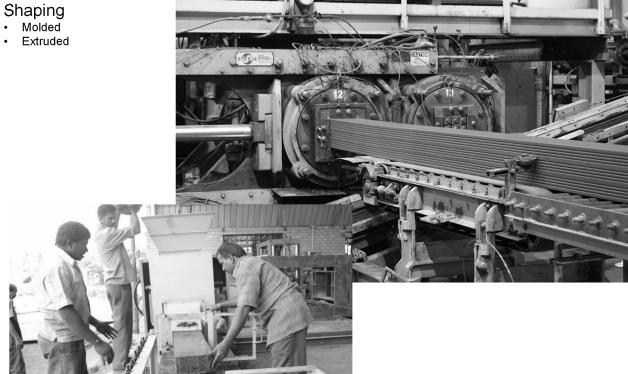
Clay Units – Manufacture


Ingredients


- Surface clays
- Shale clays
- Fire clays

Preparation

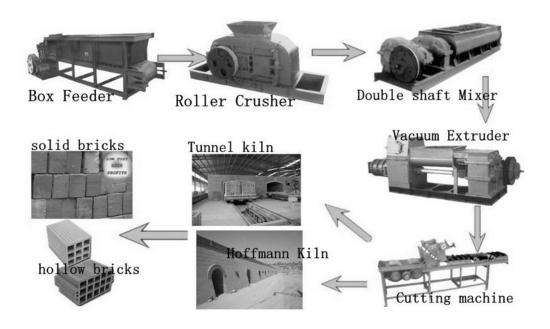
- Mine
- Crush
- Moisturize and mix (pug mill)


Clay Units - Manufacture

Shaping Molded

- Extruded

Clay Units – Manufacture

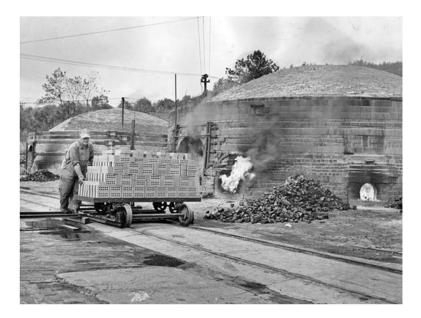

University of Michigan, TCAUP

Masonry

Slide 13 of 30

Clay Units - Manufacture

Process


Clay Units - Manufacture

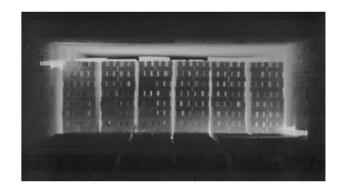
Kilns

- Beehive
- Tunnel

University of Michigan, TCAUP

Masonry Slide 15 of 30

Clay Units – Manufacture


Kilns

- Beehive
- Tunnel

Clay Units - Performance

Grades

- SW severe weather
- MW moderate weather
- NW no weather
- LBX frost
- LB no frost

Absorption C/B

- B 5 hr boiling water
- C cold water 24 hr
- · C/B ratio

Table 4.1 Physical Requirements for Solid and Hollow Brick (from Ref. 4.10 and 4.12)

Brick grade	Minimum compressive strength* psi (MPa)		Maximum water absorption by 5-hour boiling (%)		Maximum saturation coefficient (C/B)	
	Average of 5 bricks	Individual	Average of 5 bricks	Individual	Average of 5 bricks	Individual
SW	3000 (20.7)	2500 (17.2)	17	20	0.78	0.8
MW	2500 (17.2)	2200 (15.2)	22	25	0.88	0.9
NW**	1500 (10.3)	1250 (8.6)	No limit	No limit	No limit	No limit

^{*} Based on gross area for solid units and net area for hollow units.

** Not applicable to hollow or facing brick.

Table 4.2 Physical Requirements for Clay Loadbearing Wall Tile (from Ref. 4.12)

Grade	Minimu End constr		sive strength*, psi (MPa) Side construction tile		Maximum water absorbed by 1-hour of boiling, %	
	Average of 5 specimens	Individual	Average of 5 specimens	Individual	Average of 5 specimens	Individual
LBX	1400 (9.6)	1000 (6.8)	700 (4.8)	500 (3.4)	16	19
LB	1000 (6.8)	700 (4.80	700 (4.8)	500 (3.4)	25	28

Based on gross area

University of Michigan, TCAUP

Masonry

Slide 17 of 30

Clay Units - Compression

Compressive Strength

- By grade (SW, MW, NW Tab. 4.1)
- Clay type (surface, shale, fire)
- Forming (molded, extruded)

Typical minimum in US

• 8000 psi

	Grade	Minimum compressive strength (psi)			
		Gross Area			
		Average of 5	Individual		
I	SW	3000	2500		
	MW	2500	2200		

Туре	Average strength (psi)	
All molded	5290	
Extruded, All	11300	
Extruded, Fireclay	15350	
Extruded, Shale	11260	
Extruded, Other	9170	

Clay Units - Tension

Tensile Strength

- · Direct tension (difficult)
- Modulus of Rupture (beam high value)
- Splitting Tension (easier to do)
- ratio of tension/compression stress ~0.10

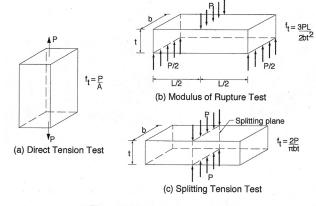


Figure 4.6 Tension test methods.



Figure 4.15 Tensile strength of clay masonry units.

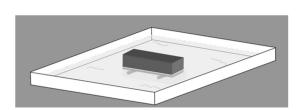
University of Michigan, TCAUP

Masonry

Slide 19 of 30

Clay Units – Water Absorption

Initial Rate of Absorption (IRA)


- · Affects mortar and brick bond
- If too high sucks water out of mortar too fast and weakens the mortar bond
- If too low does not bond to brick

IRA test

- · Oven dry brick for 24 hrs
- Cool down
- Get dry weight: W_{DRY} grams
- Place in 1/8" water for 1 min
- · Dab dry with towel
- Get wet weight: W_{WET} grams
- Water gain is: W_{GAIN} = W_{WET} W_{DRY}
- 5 bricks should be tested.

Application

- Ideal range is between 5 and 20
- If IRA > 30, then wet units before placing
 - 24 hrs before placement
 - Surface should not be wet when used
- Field test:
 - Place 20 drops of water on quarter sized area
 - If all water is absorbed within 90 sec. then wetting the brick is recommended.

Clay Units - Water Absorption

Absorption Properties

- · Rate at with water is absorbed
- · Can be a measure of porosity and durability

C/B Ratio

- C: cold water absorption in 24 hrs (free absorption)
- B: additional water absorbed in 5 hrs of boiling. A measure of the remaining pore space.
- The more remaining pore space (lower C/B), the more durable the brick. More pore space to absorb freezing expansion.

Application

- The lower the C/B ratio, the more durable the brick.
- There is also a limit on the boiling test:
 - Grade SW: C/B < 0.78 AND B < 17%
 - Grade MW: C/B < 0.88 AND B < 22%

University of Michigan, TCAUP Masonry Slide 21 of 30

Clay Units - Durability

Durability – freeze/thaw

- By grades SW, MW
- C/B limit
- 24 hr cold ≤ 8%
- 50 freeze/thaw cycles
- Pore size > 3 microns (proposed)

Clay Units - Efflorescence

Efflorescence on brick

- · Leaching of salts to surface
- Initially cleaned off with muriatic acid (diluted)
- If it returns there may be a moisture problem
- Can lead to spalling

Masonry

Clay Units - Expansion

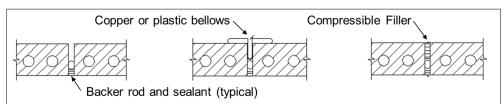
Moisture Expansion

University of Michigan, TCAUP

• $ke = 3x10^{-4} in./in. (mean value)$

Thermal Expansion

- $kt = 3.9x10^{-6} in./in./F$ (mean value)
- For:
- 3/8 in. expansion joint
- 50% extensibility
- $\Delta t = 100 F$
- Joint spacing = 22 ft.

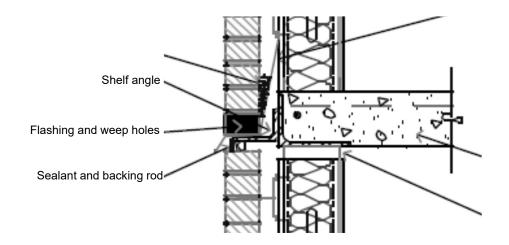

Construction Detailing

- Keep joint free of foreign material that would prevent compression, e.g. mortar
- · Interrupt any joint reinforcing

$$S_e = \frac{w_j e_j}{(k_e + k_t \Delta t)100}$$

 S_e = spacing of expansion joints w_j = width of expansion joint e_i = extensibility of expansion joint material (%)

Slide 23 of 30

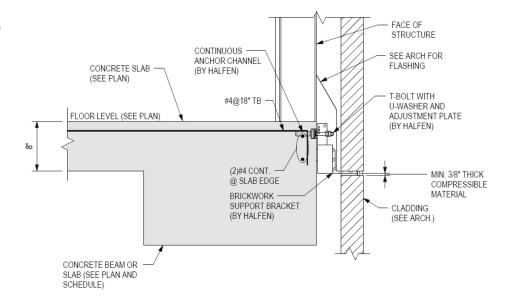


Backer rod serves as surface to tool joint against.
Sealant must not adhere to backer rod.
Depth of sealant is typically one-half the expansion joint width

Horizontal Expansion Joint

Construction Detailing

- Place below shelf angle
- Brick expansion
- Frame shortening
- Shelf angle deflection




University of Michigan, TCAUP Masonry Slide 25 of 30

Horizontal Expansion Joint

Construction Detailing

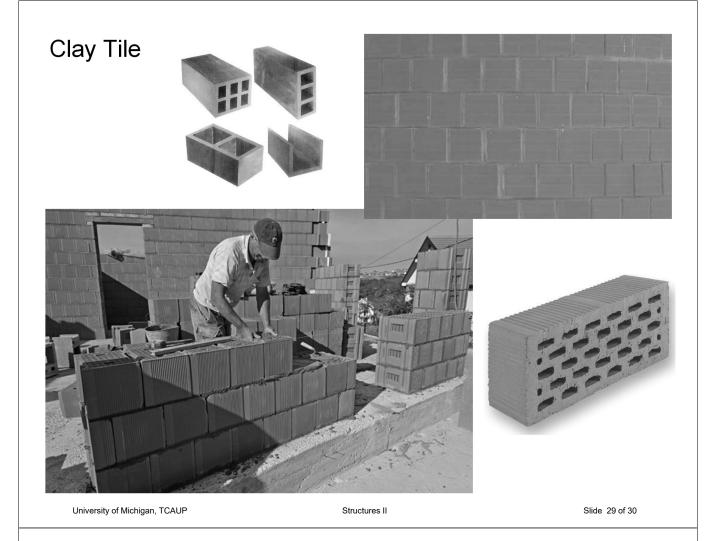
- · Place below shelf angle
- Brick expansion
- · Frame shortening
- · Shelf angle deflection

Clay Units – Performance

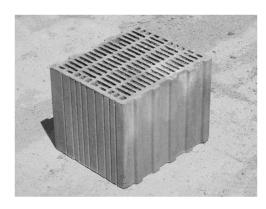
Typical Values

Property		Clay Masonry	Concrete Masonry	
Unit strength		8000 psi	2000 psi	
Type N mortar	f_m'	2440 psi	1750 psi	
туре і і і і і і і і і	E_m	$1.70x10^6 \ psi$	$1.58x10^6 \ psi$	
Type M or S mortar	f_m'	2920 psi	2000 psi	
Type W O S Mortal	E_m	$2.05x10^6 \ psi$	$1.80x10^6 \ psi$	

Property	Clay Masonry	Concrete Masonry	
Modulus of Elasticity, E_m	$700f'_m$	$900f_m'$	
Shear Modulus, G	$0.4E_m$	$0.4E_m$	
Coefficient of Creep	$\frac{0.7 \times 10^{-7}}{psi}$	$\frac{2.5x10^{-7}}{psi}$	

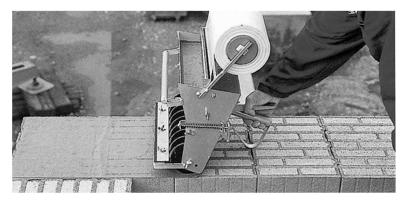

University of Michigan, TCAUP Masonry Slide 27 of 30

Clay Units – Performance


Required Net Area C of Clay Mason	f'm For Net Area Compressive	
When Used With Type M or S Mortar	When Used With Type N Mortar	Strength of Masonry (psi)
1,700	2,100	1,000
3,350	4,150	1,500
4,950	6,200	2,000
6,600 8,250		2,500
8,250	10,300	3,000
9,900		3,500
11,500		4,000

(From Masonry Standards Joint Committee Specifications for Masonry Structures, ACI 530.1/ASCE 6/TMS 602-99)

University of Michigan, TCAUP Masonry Slide 28 of 30



Insulated Clay Tile

University of Michigan, TCAUP Structures II Slide 30 of 30