

Venice Biennale, Foster + Partners

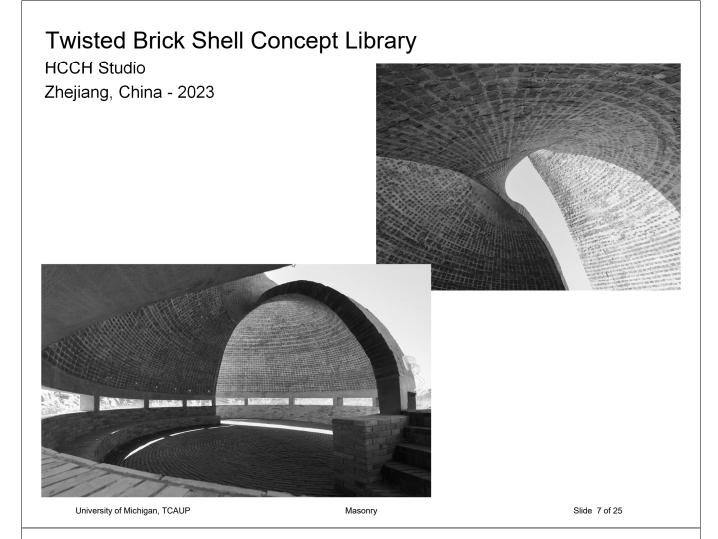
Rwanda Droneport, Foster + Partners

Examples of Masonry Vaulting

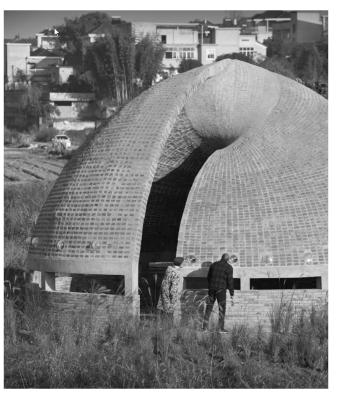

```
University of Michigan, TCAUP
```

Masonry

Slide 5 of 25


Twisted Brick Shell Concept Library HCCH Studio

Zhejiang, China - 2023

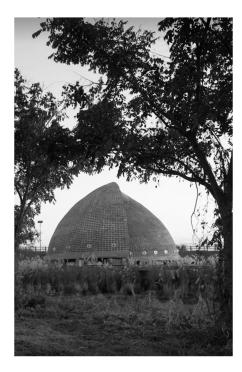

University of Michigan, TCAUP

Twisted Brick Shell Concept Library

HCCH Studio Zhejiang, China - 2023

Twisted Brick Shell Concept Library

HCCH Studio

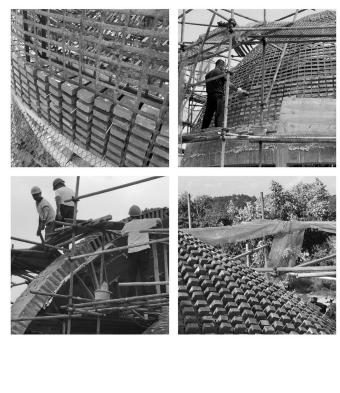

University of Michigan, TCAUP

Masonry

Slide 9 of 25

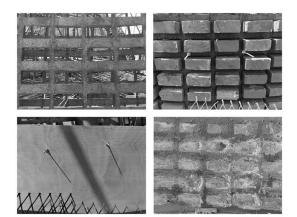
Twisted Brick Shell Concept Library

HCCH Studio Zhejiang, China - 2023



Twisted Brick Shell Concept Library HCCH Studio

Zhejiang, China - 2023


University of Michigan, TCAUP

Masonry

Slide 11 of 25

Twisted Brick Shell Concept Library

HCCH Studio Zhejiang, China - 2023

Types of Infill Walls

Infill Walls

- Interior partitions •
- Exterior non-supporting walls ٠
- Barriers to fire or sound ~
- Screen walls •
- Non-loadbearing ٠
- Empirical design ٠
- Single story •
- Usually empirically designed
- h/t of 36

University of Michigan, TCAUP Masonry Slide 13 of 25 Infill Walls cross roof end walls 18 = ^h floor or h/t ratios wall h İt beam EXTERIOR WALL OR INTERIOR PARTITION SPANNING HORIZONTALLY BETWEEN INTERSECTING WALLS h OR PARTITIONS floor or foundation columns or

pilasters <u>....</u>‡t . >>

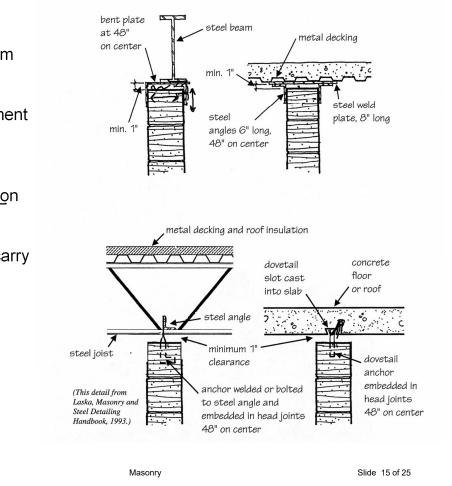
EXTERIOR WALL OR INTERIOR PARTITION SPANNING HORIZONTALLY BETWEEN COLUMNS OR PILASTERS

EXTERIOR WALL SPANNING VERTICALLY BETWEEN FLOORS, ROOF, OR

SPANDREL BEAMS

Empirical Span-to-Thickness Ratios for Lateral Support of Masonry Walls			
Wall or Element	Maximum Unsupported Height or Length to Nominal Thickness $(\ell/t \text{ or } h/t)$		
Non-bearing walls Exterior walls Interior partitions	18 — 36 —		

(Based on requirements of the MSJC Building Code Requirements for Masonry Structures ACI 530/ASCE 5/TMS 402, and International Building Code 2003)


Infill Walls

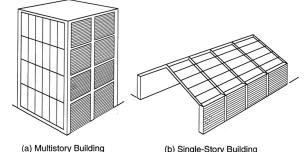
Must be separated from slabs and columns

Spaces and/or movement joints are used

Spaces must accommodate deflection and story drift

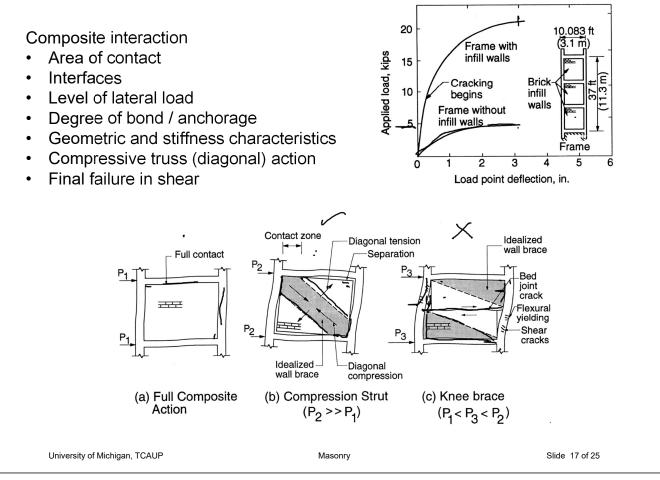
Must be designed to carry out of plane loads earthquake or wind

Infill Walls

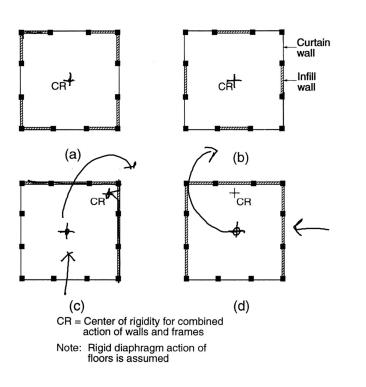

University of Michigan, TCAUP

Can be designed as infill between slabs and columns

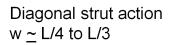
Either single or multi-story


When built snuggly against structure they stiffen the frame (carry shear loads from frame). Frame and wall can act as a composite system.

Thermal expansion loads need also be considered.

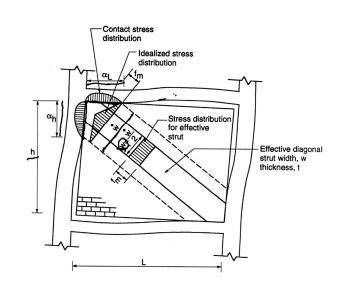

(b) Single-Story Building

Infill Walls



Infill Walls

The arrangement of infill walls can lead to torsional loads when not symmetrically placed.


Infill Walls

Force in strut:

$$\underline{\alpha_h} = \frac{\pi}{2} \sqrt[4]{\frac{4 E_f I_c h}{E_m t \sin 2\theta}} \qquad \text{FRAME}$$

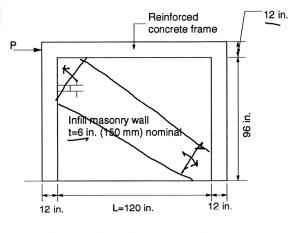
$$\underline{\alpha_L} = \pi \sqrt[4]{\frac{4 E_f I_b L}{E_m t \sin 2\theta}}$$

where: E_m , E_f = elastic moduli of the masonry wall and frame material, respectively

t, h, L = thickness, height, and length of the infill wall, respectively I_c , I_b = moments of inertia of the column and the beam of the frame, respectively θ = tan⁻¹ (h/L)

$$w = \frac{1}{2} \sqrt{\alpha_h^2 + \alpha_L^2}$$

Masonry


Slide 19 of 25

Infill Walls - example

Determine the increase in stiffness of the frame with the added infill wall

Given: Infill wall: Thickness t = 5 5/8" $E_w = 2000$ ksi Frame: Areas of members: $A_b = A_c = 144$ in² Moment of Inertia: $I_b = I_c = 1728$ in⁴ Ef = 3000 ksi

Find: Width of diagonal strut Deflection of the frame with and without the wall

(a) Reinforced Concrete Frame and Masonry Infill Wall

Infill Walls - example

Determine the increase in stiffness of the frame with the added infill wall

$$\underline{\alpha}_{h} = \frac{\pi}{2} \sqrt{\frac{E_{f} l_{c} h}{2E_{m} t \sin 77.3^{\circ}}} = 32.7 \text{ in.}$$

$$\underline{\alpha}_{L} = \pi \sqrt{\frac{E_{f} l_{b} L}{2E_{m} t \sin 77.3^{\circ}}} = 68.5 \text{ in.}$$

$$\underline{w} = \frac{1}{2} \sqrt{\alpha_{h}^{2} + \alpha_{L}^{2}} = 38 \text{ in.}^{*}$$
Area of diagonal strut, $A_{d} = 38 \times 5.625 \stackrel{''}{=} 213.8 \text{ in.}^{2}$

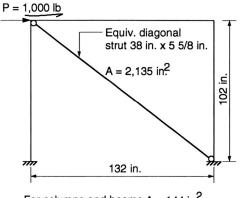
$$det{tan}^{-1} \frac{h}{L} = 38.65^{\circ}$$
University of Michigan, TGLP
$$det{tan}^{-1} \frac{h}{L} = 38.65^{\circ}$$

68

P = 1,000 lbac

Infill Walls - example

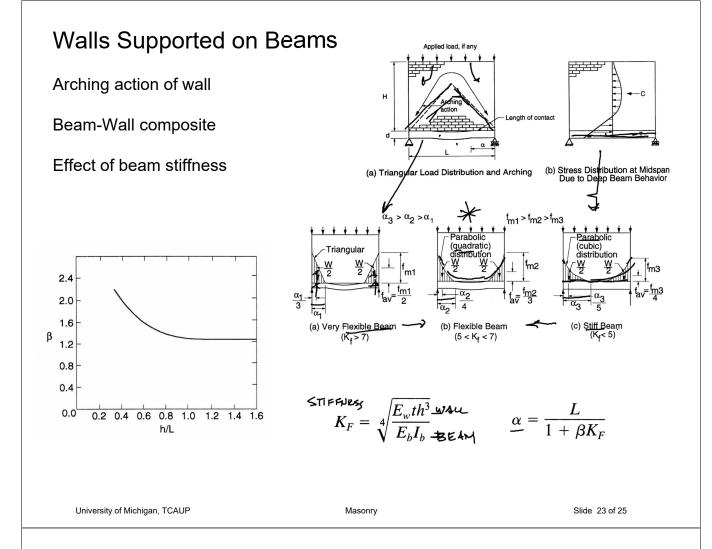
Determine the increase in stiffness of the frame with the added infill wall


Deflection of frame without wall:

 $\Delta_{\text{horiz}} = \underbrace{0.013}_{\text{horiz}} \text{ in. (0.33 mm) due to 1000 lb lateral force}$ $\therefore \text{ stiffness, } k = \frac{P}{\Delta} = \frac{1000}{1.3 \times 10^{-2}} = 77000 \text{ lb/in.} = \underbrace{77 \text{ kips/in.}}_{\text{in.}}$

Deflection of frame with wall:

 $\Delta_{\text{horiz}} = 0.0002 \text{ in}.$ due to 1000 lb lateral force


: stiffness, $k = \frac{P}{\Delta} = \frac{1000}{0.0002} = 5 \times 10^6 \,\text{lb/in.} = 5000 \,\text{kips/in.}$

For columns and beams A = 144 in.² I_c = 1,728 in.⁴

Equivalent Strut Model

$$\theta = \tan^{-1}\frac{h}{L} = 38.65^\circ$$

Mortar Types

Types M, S, N, O

The following mortar designations took effect in the mid-1950's:

Μ	а	S	0	Ν	w	0	r	K
strong	est							weakest

Table 2-3. Guide to the Selection of Mortar Type*

		Mortar type		
Location	Building segment	Recommended	Alternative	
Exterior, above grade	Load-bearing walls Non-load-bearing walls Parapet walls	N O** N	S or M N or S S	
Exterior, at or below grade	Foundation walls, retaining walls, manholes, sewers, pavements, walks, and patios	S†	M or N†	
Interior	Load-bearing walls Non-load-bearing partitions	N O	S or M N	

*Adapted from ASTM C270. This table does not provide for specialized mortar uses, such as chimney, reinforced masonry, and acid-resistant mortars. **Type O mortar is recommended for use where the masonry is unlikely to be frozen when saturated or unlikely to be subjected to high winds or other significant lateral loads. Type N or S mortar should be used in other cases. TMasonry exposed to weather in a nominally horizontal surface is extremely vulnerable to weathering. Mortar for such masonry should be selected with due caution.

Note: For tuckpointing mortar, see "Tuckpointing," Chapter 9.

Portland cement - lime mortars

Relative Parts by Volume

mortar type	Portland cement	sand	
М	1	1 <u>.</u> 4	3 ¹ 2 4 ¹ 2
S	1	¹ 2	4 ¹ 2
N	1	1	<u>6</u>
Ο	1	2	9

sum should equal 1/3 of sand volume (assuming that sand has void ratio of 1 in 3)

University of Michigan, TCAUP

Mortar Mixing

University of Michigan, TCAUP

Masonry

Slide 25 of 25