

Venice Biennale, Foster + Partners

Rwanda Droneport, Foster + Partners

Examples of Masonry Vaulting


```
University of Michigan, TCAUP
```

Masonry

Slide 5 of 25

Twisted Brick Shell Concept Library HCCH Studio

Zhejiang, China - 2023

University of Michigan, TCAUP

Twisted Brick Shell Concept Library

HCCH Studio Zhejiang, China - 2023

Twisted Brick Shell Concept Library

HCCH Studio

University of Michigan, TCAUP

Masonry

Slide 9 of 25

Twisted Brick Shell Concept Library

HCCH Studio Zhejiang, China - 2023

Twisted Brick Shell Concept Library HCCH Studio

Zhejiang, China - 2023

University of Michigan, TCAUP

Masonry

Slide 11 of 25

Twisted Brick Shell Concept Library

HCCH Studio Zhejiang, China - 2023

Types of Infill Walls

Infill Walls

- Interior partitions
- Exterior non-supporting walls
- Barriers to fire or sound
- Screen walls
- Non-loadbearing
- Empirical design
- Single story
- Usually empirically designed
- h/t of 36

University of Michigan, TCAUP	Masonry	Slide 13 of 25			
Infill Walls	end cross	roof			
h/t ratios		floor or h beam			
	PARTITION SPANNING HORIZONTALL BETWEEN INTERSECTING WALLS OR PARTITIONS	Y floor or h foundation			
	e pilaste	t EXTERIOR WALL SPANNING			
	EXTERIOR WALL OR INTERIOR PARTITION SPANNING HORIZONTAL BETWEEN COLUMNS OR PILASTER	VERTICALLY BETWEEN LY FLOORS, ROOF, OR S SPANDREL BEAMS			
	Empirical Span-to-Thickness Ratios for Lateral Support of Masonry Walls				
	Maximum Unsupported Height or Length to Nominal Thickness $(\ell/t \text{ or } h/t)$				
	Non-bearing walls Exterior walls Interior partitions	18 36			
	(Based on requirements of the MSJC Building Code Requirements for Masonry Structures ACI 530/ASCE 5/TMS 402. and International Building Code 2003)				

Infill Walls

Must be separated from slabs and columns

Spaces and/or movement joints are used

Spaces must accommodate deflection and story drift

Must be designed to carry out of plane loads – earthquake or wind

Infill Walls

University of Michigan, TCAUP

Can be designed as infill between slabs and columns

Either single or multi-story

When built snuggly against structure they stiffen the frame (carry shear loads from frame). Frame and wall can act as a composite system.

Thermal expansion loads need also be considered.

(b) Single-Story Building

(a) Multistory Building

Infill Walls

Infill Walls

The arrangement of infill walls can lead to torsional loads when not symmetrically placed.

Infill Walls Contact stress distribution Idealized stress distribution **Diagonal strut action** w ~ L/4 to L/3 Stress distributio α, for effective Force in strut: trut Effective diagonal h strut width, w thickness, t $\alpha_h = \frac{\pi}{2} \sqrt[4]{\frac{4 E_f I_c h}{E_m t \sin 2\theta}}$ $\alpha_L = \pi \sqrt[4]{\frac{4 E_f I_b L}{E_m t \sin 2\theta}}$ where: E_m , E_f = elastic moduli of the masonry wall and frame material, respectively t, h, L = thickness, height, and length of the infill wall, respectively I_c , I_b = moments of inertia of the column and the beam of the frame, respectively $\theta = \tan^{-1} (h/L)$ $w = \frac{1}{2}\sqrt{\alpha_h^2 + \alpha_I^2}$

Masonry

Infill Walls - example

University of Michigan, TCAUP

Determine the increase in stiffness of the frame with the added infill wall

Given: Infill wall: Thickness t = 5 5/8" $E_w = 2000 \text{ ksi}$ Frame: Areas of members: $A_b = A_c = 144 \text{ in}^2$ Moment of Inertia: $I_b = I_c = 1728 \text{ in}^4$ Ef = 3000 ksi

Find: Width of diagonal strut Deflection of the frame with and without the wall

and Masonry Infill Wall

Slide 19 of 25

Infill Walls - example

Determine the increase in stiffness of the frame with the added infill wall

$$\alpha_h = \frac{\pi}{2} \sqrt[4]{\frac{E_f I_c h}{2E_m t \sin 77.3^\circ}} = 32.7 \text{ in.}$$

$$\alpha_L = \pi \sqrt[4]{\frac{E_f I_b L}{E_m t \sin 77.3^\circ}} = 68.5 \text{ in.}$$

(

$$w = \frac{1}{2}\sqrt{\alpha_{h}^{2} + \alpha_{L}^{2}} = 38$$
 in.*

Area of diagonal strut, $A_d = 38 \times 5.625 = 213.8 \text{ in.}^2$

Infill Walls - example

University of Michigan, TCAUP

Determine the increase in stiffness of the frame with the added infill wall

Deflection of frame without wall:

 $\Delta_{\text{horiz}} = 0.013 \text{ in. } (0.33 \text{ mm}) \text{ due to } 1000 \text{ lb lateral force}$ $\therefore \text{ stiffness, } k = \frac{P}{\Delta} = \frac{1000}{1.3 \times 10^{-2}} = 77000 \text{ lb/in.} = 77 \text{ kips/in.}$

Deflection of frame with wall:

 $\Delta_{\text{horiz}} = 0.0002$ in. due to 1000 lb lateral force

: stiffness, $k = \frac{P}{\Delta} = \frac{1000}{0.0002} = 5 \times 10^6 \,\text{lb/in.} = 5000 \,\text{kips/in.}$

For columns and beams A = 144 in.² $I_c = 1,728 \text{ in.}^4$

Equivalent Strut Model

$$\theta = \tan^{-1}\frac{h}{L} = 38.65^\circ$$

Masonry

Mortar Types

Types M, S, N, O

The following mortar designations took effect in the mid-1950's:

Μ	а	S	0	Ν	w	0	r	K
strong	est							weakest

Table 2-3. Guide to the Selection of Mortar Type*

	Building segment	Mortar type		
Location		Recommended	Alternative	
Exterior, above grade	Load-bearing walls Non-load-bearing walls Parapet walls	N O** N	S or M N or S S	
Exterior, at or below grade	Foundation walls, retaining walls, manholes, sewers, pavements, walks, and patios	Sţ	M or N†	
Interior	Load-bearing walls Non-load-bearing partitions	N O	S or M N	

*Adapted from ASTM C270. This table does not provide for specialized mortar uses, such as chimney, reinforced masonry, and acid-resistant mortars. **Type O mortar is recommended for use where the masonry is unlikely to be frozen when saturated or unlikely to be subjected to high winds or other significant lateral loads. Type N or S mortar should be used in other cases. †Masonry exposed to weather in a nominally horizontal surface is extremely vulnerable to weathering. Mortar for such masonry should be selected with due caution.

Note: For tuckpointing mortar, see "Tuckpointing," Chapter 9.

Portland cement - lime mortars

Relative Parts by Volume

mortar type	Portland cement	lime	sand
М	1	¹ 4	3 ¹ 2
S	1	¹ 2	4 ¹ 2
Ν	1	1	6
Ο	1	2	9
		1	

sum should equal 1/3 of sand volume (assuming that sand has void ratio of 1 in 3)

University of Michigan, TCAUP

Mortar Mixing

University of Michigan, TCAUP

Masonry

Slide 25 of 25