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Types of Flexure in Masonry
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Masonry
beam
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Beams and Lintels @
. . | ____Masonry
* single-wythe brickwork lintel
» double-wythe brickwork + grout
» special lintel CMU

* bond beam CMU
* special knock-out CMU

Beams and Lintels
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Reinforcing
steel

Reinforced brick
masonry lintels

Bond beam or
shallow lintel

Brick Beams and Lintels

Deey
concprete Bond beam
masonry lintel

Concrete Block Beams and Lintels

Typical masonry bond beams

e
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Types of Flexure in Masonry

Bond beam or
shallow lintel

Bond Beams
« within a wall
* horizontally reinforced and grouted
+ resist out of plane bending -
» resist in plane tension and shear
+ typically at top of foundation and

floor and roof levels

+ distribute floor or roof loads
* —bond beam CMU
* | special knock-out CMU «

Deep
concrete
masonry lintel

Bond beam

Typical masonry bond beams
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Types of Flexure in Masonry — Bond Beams
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Types of Flexure in Masonry — Bond Beams
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Design considerations

Strength and Stability
» flexure —
* shear—
* anchorage —

Serviceability
» deflection -~
» cracking
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Fundamental Assumptions
Elastic Analysis:

* internal forces at any section are in equilibrium with external loads

» plane sections before bending remain plane after bending

 after cracking tension in masonry is ignored. Tension is carried by steel.

« linearly elastic behavior exists for both steel and masonry within the service

load range. N.A. at centroid of cracked section.
+ complete bond exists between steel and grout
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Fundamental Assumptions - uncracked.
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Fundamental Assumptions - cracked oF,

Pe = 3F (n + F,/F,)
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Fundamental Assumptions — cracked + under reinforced
nF,
P = 3F (n + FJF,)
b T
i N.A Y%
: o
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Fundamental Assumptions — cracked + under reinforced
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Grouted Concrete Block — example ASD
Gi ¥
iven:
. f.n= 850 psi A 0 79 /
* 3 blocks high § p =315 = Te~ 75 200052
e 75/8in. wide — = —_— —
° = = in2 )
AS_ 1 X#_S‘ 0.79in d=20in. y Kk = m = b
e« d=20in. Eu # —
* modular ration =15 rd N (.);3_2.%(
* Fb=2850psi /f 20,000 i =1 — k/3 = 0.892
+ Fs=20ksi L R AR
Find:
+ allowable bending moment M Compression:
M = Cjd = %F,,kjbdz
o, 8“5:)‘(0 324)(0.892)(7.625)(20)?
o0 S = 0D = 31.1ft-kip.
cle Tension:
S § M = Tjd = pF,jbd?
W—j o8 0.0052(20000)(0.892)(7.625)(20)? -
= 1000(12) =
1 #8 (25 mm) —‘L
tension controls
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Grouted Concrete Block — example ASD

Given:

3 blocks high

7 5/8 in. wide

As =1 x#8=0.79in?
d=20in.

modular ration =15
Fb = 850 psi

Fs =20 ksi

Find:
Find balanced condition and As-bal

f= 850 psi

kd

Py =

d=20in.

&%) =1,333 psi

University of Michigan, TCAUP Masonry

kd 850

2 80+ 333 03

k =

kd = 0.389(20) = _7,1? in. from the top
Jj=1-kI3 =087

—_—

C= %fmkbd = %(850)(0,389)(7.625)(20)(10)‘3

C = 25.21 kips
C=T=Af,
25210 .2
= 20000 ~ 1.26in.
n
nk, 15(850)

2Fn + FJF,)  2(20000)(15 + 20000/850) _ 2083

As .
A, = pybd = 0.0083(7.625)(20) = 1.26in.2 'Ej" - () ;

Pmax = 0.5 p, = 0,5(0.0083) = 0.00415 < 0.0052 oK

— 4

—_—

—
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2-Wythe Brick Beam - example

Given:

Grouted beam

L =12 ft.

P @ C.L. =10 kips
selfweight w, = 273 Ib/ft

« f.,=3000 psi-

» F,=0.33(F,)= 1000 psi
* F,=20ksi

+ d=28in.

Find:

* Required reinforcement, A,

¢ y

10 kips d=28in. .

W=2P3 Ve | — l
[ ]
) [}
L=12ft (3.6 m) '

41
33 in. _‘i
University of Michigan, TCAUP Masonry

_PI wol?
M=gt g
10 x 12, 0.273 x (12)2
LS . G _ 30+ 49 = 349 fikips

M =Tjd = Af,jd
= ¥

M 34.9(12)(1000)

A, = = —— =
7 fJd ~ 20000(0.90)(28)
rd

83in.2

Try two No. 6 bars, giving A, = 0.88 in.2
check the stresses. i
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2-Wythe Brick Beam - example

Given:
* Grouted beam
e L=12ft.

- P@C.L.=10kips
+ selfweight w, = 273 Ib/ft

A, (o088
P=%d= 10 %28 200514
E, 29,000,000
"= E 3000 x 750~ 22

k="V2np + (np)2 — np = 0.247

- f,,=3000 psi fu j=1k3=0918
 F,=0.33(f )= 1000 psi kK
+ F,=20ksi 57 M =2 fo kb
© d=28in. 2(34.9)(12)(1000)
Find: In = 52091800087 ~ 2LPS
* Required reinforcement, A,
f, =471psi < F, =1000 v
ok
10 kips d=28in. J,l
{
E= - Prnin = ?‘_0 = % = 0.0020
F L=12ft (3.6 m) i S ¥ ’
3%“"-4’— P = Pmin
use two No. 6 bars
No. 6 bars
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2-Wythe Brick Beam - example
Given: A, 088
« Grouted beam P=hd T Tox 25 - CORMEETAL
e L=12ft.

+ P@C.L.=10 kips
+ selfweight w, = 273 Ib/ft

+ f,,=3000 psi

* F,=0.33(f,,)= 1000 psi
* F,=20ksi

+ d=28in.

Find:

* Required reinforcement, A,

10 kips

i

d=28in.

il

3

L=121t (3.6 m)

Masonry

80 80
ﬁin = f = m = 0.0020
P = Pmin

use two No. 6 bars

0.003
40
29,000

>= 0.037

/ﬁmax = 0.5 p, =0.5(0.037) = 0.0185

0.00314 < 0.0852" ok
O,01e5

py = (0.85)(0.85) (%) (
— 0.003 +
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Mortar Types
Types M, S, N, O

The following mortar designations took effect in the mid-1950’s:
( j‘ ' o

(M)a @w O r K

strongest weakest

Table 2-3. Guide to the Selection of Mortar Type* Portland cement — lime mortars

Mortar type Relative Parts by Volume
Location Building segment Recommended | Alternative
Exterior, above grade | Load-bearing walls N SorM mortar Portland lime sand
Non-load-bearing walls (6o Nor$S type cement
Parapet walls ; N S
Exterior, at or below Foundation walls, = St M or Nt J
grade retaining walls, manholes, M 1 1 4 3 1 2
sewers, pavements, walks, ——
and patios
S 1 ) 41,
Interior Load-bearing walls N SorM
Non-load-bearing partitions o N N 1 1 6
*Adapted from ASTM C270. This table does not provide for specialized mortar uses, such as chimney, K""
reinforced masonry, and acid-resistant mortars.
**Type O mortar is recommended for use where the masonry is unlikely to be frozen when saturated O 1 2 9
or unlikely to be subjected to high winds or other significant lateral loads. Type N or S mortar should
be used in other cases.
tMasonry exposed to weather in a nominally horizontal surface is extremely vulnerable to weathering.

Mortar for such masonry should be selected with due caution.

Note: For tuckpointing mortar, see ““Tuckpointing,” Chapter 9.
sum should equal 1/3 of sand volume

(assuming that sand has void ratio of 1 in 3)
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