Masonry Beams and Lintels

Definitions Behavior under flexure Reinforcement

Siena College, NY David T. Biggs, P.E.

Types of Flexure in Masonry

Bond Beams

- within a wall
- horizontally reinforced and grouted
- resist out of plane bending .
- resist in plane tension and shear
- typically at top of foundation and floor and roof levels
- distribute floor or roof loads

Concrete Block Beams and Lintels

Types of Flexure in Masonry – Bond Beams

Types of Flexure in Masonry – Bond Beams

University of Michigan, TCAUP **Masonry** Masonry **Masonry Masonry COVID-10** Slide 5 of 17

Design considerations

Strength and Stability

- flexure $\mathcal{\mathcal{L}}$
- shear —
- \bullet anchorage $-$

Serviceability

- \cdot deflection \sim
- cracking

Fundamental Assumptions

Elastic Analysis:

- internal forces at any section are in equilibrium with external loads
- plane sections before bending remain plane after bending
- after cracking tension in masonry is ignored. Tension is carried by steel.
- linearly elastic behavior exists for both steel and masonry within the service load range. N.A. at centroid of cracked section.
- complete bond exists between steel and grout

Fundamental Assumptions - uncracked

$$
f_{m_i} = M y_i / I_{tr}
$$

$$
f_s = n(My_s/I_{tr})
$$

 E_s = modulus of elasticity of steel E_m = modulus of elasticity of masonry

Fundamental Assumptions – cracked + under reinforced

(a) Failure of Under-reinforced Beam (Courtesy of V.V. Neis)

$$
\rho_b = \frac{nF_b}{2F_s(n + F_s/F_b)}
$$

Grouted Concrete Block – example ASD

Given:

- 3 blocks high
- 7 5/8 in. wide
- As = 1 x #8 = 0.79 in²
- \cdot d = 20 in.
- modular ratio $n = 15$
- Fb = 850 psi
- Fs = 20 ksi

Find:

• Find balanced condition and As-bal

$$
k = \frac{kd}{d} = \frac{850}{850 + 1333} = 0.389
$$

 $kd = 0.389(20) = 7.78$ in. from the top $j = 1 - \overline{k/3} = 0.87$

$$
C = \frac{1}{2} f_m kbd = \frac{1}{2} (850)(0.389)(7.625)(20)(10)^{-3}
$$

C = 25.21 kips

$$
C = T = Asfs
$$

$$
As = \frac{25,210}{20,000} = 1.26 \text{ in.}
$$

2-Wythe Brick Beam - example

Given:

- Grouted beam
- $L = 12$ ft.
- $P @ C.L. = 10$ kips
- selfweight $w_0 = 273$ lb/ft
- $f_m = 3000 \text{ psi}$
- $F_b = 0.33(\mathbf{f'}_m) = 1000 \text{ psi}$
- $F_s = 20$ ksi
- \cdot d = 28 in.

Find:

• Required reinforcement, A_s

2-Wythe Brick Beam - example

Given:

- Grouted beam
- $L = 12$ ft.
- $P @ C.L. = 10$ kips
- selfweight $w_0 = 273$ lb/ft
- $f_m = 3000 \text{ psi}$
- $F_b = 0.33(f_m) = 1000 \text{ psi}$
- $F_s = 20$ ksi
- \cdot d = 28 in.

Find:

• Required reinforcement, $A_{\rm s}$

2-Wythe Brick Beam - example

Given:

- Grouted beam
- $L = 12$ ft.
- $P @ C.L. = 10$ kips
- selfweight $w_0 = 273$ lb/ft
- $f_m = 3000 \text{ psi}$
- $F_b = 0.33(f_m) = 1000 \text{ psi}$
- $F_s = 20$ ksi
- \cdot d = 28 in.

Find:

• Required reinforcement, A_{s}

 $\rho = \frac{A_s}{bd} = \frac{0.88}{10 \times 28} = 0.00314$

 $n = \frac{E_s}{E_m} = \frac{29,000,000}{3000 \times 750} = 12.9$

 $j = 1$ = $k/3 = 0.918$

 $k = \sqrt{2np + (np)^2} - np = 0.247$

$$
\rho_{\min} = \frac{80}{f_v} = \frac{80}{40,000} = 0.0020
$$

$$
\rho > \rho_{\min}
$$

use two No. 6 bars

$$
\rho_b = (0.85)(0.85) \left(\frac{3}{40}\right) \left(\frac{0.003}{0.003 + \frac{40}{29,000}}\right) = 0.037
$$
\n
$$
\hat{\ell}_{\text{max}}^2 = \underbrace{0.5 \, \rho_b}_{0.003} = 0.5(0.037) = 0.0185
$$
\n
$$
0.00314 < 0.0052 \text{ ok}
$$
\n
$$
\hat{\ell}_{\text{c}}^2 = 0.0185
$$

Mortar Types

Types M, S, N, O

The following mortar designations took effect in the mid-1950's:

 \mathbf{M} $\mathbf S$ \mathbf{o} $\mathbf K$ N \overline{a} $\mathbf r$ \mathbf{o} w strongest weakest

Table 2-3. Guide to the Selection of Mortar Type*

Adapted from ASTM C270. This table does not provide for specialized mortar uses, such as chimney,

reinforced masonry, and acid-resistant mortars.

"Type O mortar is recommended for use where the masonry is unlikely to be

Note: For tuckpointing mortar, see "Tuckpointing," Chapter 9.

University of Michigan, TCAUP **Structures II** Structures II Structures II Slide 17 of 17

Portland cement – lime mortars

Relative Parts by Volume

mortar type	Portland cement	lime	sand
M		$\mathbf{1}_{4}$	
s		$1\overline{2}$	4^{1}_{2}
			6
		2	9

sum should equal 1/3 of sand volume (assuming that sand has void ratio of 1 in 3)