Masonry Beams and Lintels

Definitions
Behavior under flexure
Reinforcement

Siena College, NY David T. Biggs, P.E. 1981

University of Michigan, TCAUP Masonry Slide 1 of 17

Types of Flexure in Masonry

Beams and Lintels

- · single-wythe brickwork
- double-wythe brickwork + grout
- special lintel CMU
- bond beam CMU
- · special knock-out CMU

Beams and Lintels

Typical masonry bond beams

Types of Flexure in Masonry

Bond Beams

- · within a wall
- horizontally reinforced and grouted
- resist out of plane bending
- resist in plane tension and shear
- typically at top of foundation and floor and roof levels
- distribute floor or roof loads

Lintel block

Concrete Block Beams and Lintels

Bond beam or shallow lintel

University of Michigan, TCAUP

Masonry

Slide 3 of 17

Types of Flexure in Masonry – Bond Beams

University of Michigan, TCAUP Masonry Slide 4 of 17

Types of Flexure in Masonry – Bond Beams

University of Michigan, TCAUP Masonry Slide 5 of 17

Design considerations

Strength and Stability

- flexure
- shear —
- · anchorage -

Serviceability

- deflection -
- cracking

Fundamental Assumptions

Elastic Analysis:

- · internal forces at any section are in equilibrium with external loads
- · plane sections before bending remain plane after bending
- after cracking tension in masonry is ignored. Tension is carried by steel.
- linearly elastic behavior exists for both steel and masonry within the service load range. N.A. at centroid of cracked section.
- complete bond exists between steel and grout

Fundamental Assumptions - uncracked

$$f_{m_i} = My_i/I_{tr}$$
 $n = \frac{E_s}{E_m}$ $E_s = \text{modulus of elasticity of steel}$ $E_m = \text{modulus of elasticity of masonry}$ $f_s = n(My_s/I_{tr})$

Fundamental Assumptions - cracked

$$C = f_m kbd/2$$

$$T = A_s f_s = \rho b d f_s$$

$$\rho = A_s / b d$$

$$\rho = A_s / b d$$

$$k = 2\rho f_s / f_m$$

$$k = \sqrt{2n\rho + (n\rho)^2 - n\rho}$$

Compression

$$\underbrace{M} = \underbrace{Cjd} = \underbrace{f_m kjbd^2/2}$$

$$\underbrace{f_m} = 2M/kjbd^2$$

Tension

$$M = \underline{Tjd} = \rho f_s jbd^2$$

$$f_s = M/\rho jbd^2$$

University of Michigan, TCAUP

$$id = d - kd/3$$

$$j = 1 - k/3$$

$$\rho_b = \frac{nF_b}{2F_s (n + F_s/F_b)}$$

$$n = \frac{E_s}{E_m}$$

 E_s = modulus of elasticity of steel E_m = modulus of elasticity of masonry

Masonry

Slide 9 of 17

Fundamental Assumptions – cracked + under reinforced

(a) Failure of Under-reinforced Beam (Courtesy of V.V. Neis)

$$\underline{\rho_b} = \frac{nF_b}{2F_s (n + F_s/F_b)}$$

Fundamental Assumptions - cracked + under reinforced

$$T = A_{\underline{s}} \underline{f_{\underline{y}}}$$

$$\underline{C} = \gamma_1 f'_m \underline{\beta_1} cb \qquad \qquad \underline{M}_n = T \left(d - \frac{\beta_1 c}{2} \right) \qquad \qquad \omega = \rho \frac{f_y}{f'_m}
\underline{C} = \frac{A_s f_y}{\gamma_1 f'_m \beta_1 b} \qquad \qquad \underline{M}_n = A_s f_y \left(d - \frac{A_s f_y}{2\gamma_1 f'_m b} \right) \qquad \qquad \underline{M}_n = b d^2 f'_m \omega \left(1 - \frac{\omega}{2\gamma_1} \right)
\underline{M}_n = b d^2 f'_m \omega (1 - 0.59 \omega)$$

$$\rho_b = \beta_1 \gamma_1 (f'_m / f_y) \left(\frac{\varepsilon_u}{\varepsilon_u + \varepsilon_v} \right) \qquad M_u \le \Phi M_n$$

$$M_u \le \Phi b d^2 f'_m \omega (1 - 0.59\omega)$$

University of Michigan, TCAUP

Masonry

Slide 11 of 17

Grouted Concrete Block - example ASD

Given:

- 3 blocks high
- 7 5/8 in. wide
- As = $1 \times \#8 = 0.79 \text{ in}^2$
- d = 20 in.
- modular ratio $n = 15 \frac{1}{12}$
- Fb = 850 psi
- Fs = 20 ksi

Find:

allowable bending moment M

Compression:

$$M = Cjd = \frac{1}{2}F_bkjbd^2$$

$$= \frac{850(0.324)(0.892)(7.625)(20)^2}{2(1000)(12)} = \underbrace{31.1 \text{ ft-kip.}}$$

Tension:

$$M = Tjd = \rho F_s jbd^2$$

$$= \frac{0.0052(20000)(0.892)(7.625)(20)^2}{1000(12)} = 23.6 \text{ ft-kip}$$

tension controls

Grouted Concrete Block – example ASD

Given:

3 blocks high

7 5/8 in. wide

• As = $1 \times \#8 = 0.79 \text{ in}^2$

• d = 20 in.

modular ratio n = 15

• Fb = 850 psi

Fs = 20 ksi

Find:

Find balanced condition and As-bal

$$k = \frac{kd}{d} = \frac{850}{850 + 1333} = 0.389$$

kd = 0.389(20) = 7.78 in. from the top

j = 1 - k/3 = 0.87

 $\underline{C} = \frac{1}{2} f_m kbd = \frac{1}{2} (850)(0.389)(7.625)(20)(10)^{-3}$

 $C = T = A_s f_s$

 $A_s = \frac{25,210}{20,000} = 1.26 \,\mathrm{in.}^2$

$$\rho_b = \frac{nF_b}{2F_s(n + F_s/F_b)} = \frac{15(850)}{2(20000)(15 + 20000/850)} = \underline{0.0083}$$

$$A_s = \rho_b b d = 0.0083(7.625)(20) = \underline{1.26 \text{ in.}}^2$$

$$p_{\text{max}} = 0.5 p_{\text{b}} = 0.5(0.0083) = 0.00415 < 0.0052 \text{ W}$$

University of Michigan, TCAUP

Masonry

Slide 13 of 17

2-Wythe Brick Beam - example

Given:

- Grouted beam
- L = 12 ft.
- P@C.L. = 10 kips
- selfweight $w_0 = 273 \text{ lb/ft}$
- $f'_m = 3000 \text{ psi-}$
- $F_b = 0.33(F_m) = 1000 \text{ psi}$ $F_s = 20 \text{ ksi}$
- d = 28 in.

Find:

Required reinforcement, A_s

$$\underline{M} = \frac{Pl}{4} + \frac{w_0 l^2}{8}$$

$$= \frac{10 \times 12}{4} + \frac{0.273 \times (12)^2}{8} = 30 + 4.9 = 34.9 \text{ ft-kips}$$

$$\underline{M} = Tjd = A_s f_s jd$$

$$A_s = \frac{M}{f_s jd} = \frac{34.9(12)(1000)}{20000(0.90)(28)} = \frac{0.83 \text{ in.}^2}{7}$$

Try two No. 6 bars, giving $A_s = 0.88 \text{ in.}^2$ check the stresses.

2-Wythe Brick Beam - example

Given:

- Grouted beam
- L = 12 ft.
- P@C.L. = 10 kips
- selfweight $w_0 = 273 \text{ lb/ft}$
- $f'_{m} = 3000 \text{ psi}$
- $F_b = 0.33(f'_m) = 1000 \text{ psi}$
- $F_s^{\tilde{s}} = 20 \text{ ksi}$
- d = 28 in.

Find:

Required reinforcement, A_s

 $f_{\rm m} = 471 \text{psi} < F_{\rm m} = 1000 \checkmark$

 $\rho = \frac{A_s}{hd} = \underbrace{0.88}_{10 \times 28} = \underbrace{0.00314}_{10 \times 28}$

 $n = \frac{E_s}{E_m} = \frac{29,000,000}{3000 \times 750} = 12.9$

j = 1 - k/3 = 0.918

 $M = \frac{1}{2} f_m k j b \underline{d^2}$

 $k = \sqrt{2n\rho + (n\rho)^2} - n\rho = 0.247$

$$\rho_{\min} = \frac{80}{f_y} = \frac{80}{40,000} = 0.0020$$

$$\rho > \rho_{\min}$$
use two No. 6 bars

University of Michigan, TCAUP

Masonry

Slide 15 of 17

2-Wythe Brick Beam - example

Given:

- Grouted beam
- L = 12 ft.
- P @ C.L. = 10 kips
- selfweight $w_0 = 273 \text{ lb/ft}$
- $f'_m = 3000 \text{ psi}$
- $F_b = 0.33(f'_m) = 1000 \text{ psi}$
- $F_s = 20 \text{ ksi}$
- d = 28 in.

Find:

Required reinforcement, A_s

$$\rho = \frac{A_s}{bd} = \frac{0.88}{10 \times 28} = 0.00314$$

$$\rho_{\min} = \frac{80}{f_y} = \frac{80}{40,000} = 0.0020$$

$$ho >
ho_{
m min}$$

use two No. 6 bars

$$\rho_{b} = (0.85)(0.85) \left(\frac{3}{40}\right) \left(\frac{0.003}{0.003 + \frac{40}{29,000}}\right) = 0.037$$

$$\rho_{\text{max}} = 0.5 \ \rho_{\text{b}} = 0.5(0.037) = 0.0185$$

$$0.00314 < 0.0052 \text{ ok}$$

$$0.0185$$

Mortar Types

Types M, S, N, O

The following mortar designations took effect in the mid-1950's:

Table 2-3. Guide to the Selection of Mortar Type*

Location	Building segment	Mortar type	
		Recommended	Alternative
Exterior, above grade	Load-bearing walls Non-load-bearing walls Parapet walls	N O** N	S or M N or S S
Exterior, at or below grade	Foundation walls, retaining walls, manholes, sewers, pavements, walks, and patios	S†	M or N†
Interior	Load-bearing walls Non-load-bearing partitions	N O	S or M N

Note: For tuckpointing mortar, see "Tuckpointing," Chapter 9.

Portland cement - lime mortars

Relative Parts by Volume

mortar type	Portland cement	lime	sand
М	_ 1	¹ ₄	3 ¹ 2
	1	12	4 ¹ ₂
N	1	1	6
O	1	2	9

sum should equal 1/3 of sand volume (assuming that sand has void ratio of 1 in 3)

University of Michigan, TCAUP

Structures II

Slide 17 of 17

^{*}Adapted from ASTM C270. This table does not provide for specialized mortar uses, such as chimney, reinforced masonry, and acid-resistant mortars.

**Type O mortar is recommended for use where the masonry is unlikely to be frozen when saturated or unlikely to be subjected to high winds or other significant lateral loads. Type N or S mortar should be used in other cases.

*Hasonry exposed to weather in a nominally horizontal surface is extremely vulnerable to weathering. Mortar for such masonry should be selected with due caution.