Reinforced Masonry using Strength Design

- Reinforcing requirements
- Wall design for out-of-plane loads
- · Wall design for in-plane loads

Rheinhalle Düsseldorf 1926 Arch.: Wilhelm Kreis

University of Michigan, TCAUP

Masonry

Slide 1 of 18

Rheinhalle

Düsseldorf 1926 Gesundheitspflege, soziale Fürsorge und Leibesübungen (GeSoLei) trade fair Arch.: Wilhelm Kreis World's largest Planitarium when built

200

Rheinhalle

Düsseldorf 1926 (GeSoLei) trade fair Arch.: Wilhelm Kreis Originally a Planitarium

University of Michigan, TCAUP

Masonry

Slide 3 of 18

Rheinhalle

Düsseldorf 1926 (GeSoLei) trade fair Arch.: Wilhelm Kreis Converted to a concert hall in 1970s

TMS 402 Chapter 9.3

Reinforced Masonry

- 9.3.1 Scope
- 9.3.2 Design assumptions
- 9.3.3 Reinforcement requirements and details,9.3.3.2 Maximum area of flexural tensile reinforcement
- 9.3.4 Design of beams and columns

9.3.4.1.1 nominal axial and flexural strength

9.3.4.1.2 nominal shear strength

- 9.3.5 Wall design for out-of-plane loads
- 9.3.6 Wall design for in-plane loads

University of Michigan, TCAUP

Masonry

Slide 5 of 18

TMS 402 Chapter 9.3.2 Reinforced Masonry

- 1. Member is straight prismatic section (not in code, but an assumption for our analysis)
- 2. Plane sections remain plane
- 3. All masonry in tension is neglected
- 4. Perfect bond between steel and grout
- 5. Maximum useable compression strain of masonry
 - A. clay masonry: $\varepsilon_{mu} = 0.0035$
 - B. concrete masonry: $\varepsilon_{mu} = 0.0025$
- 6. elasto-plastic stress -strain curve for reinforcement
- 7. Equivalent rectangular stress block
 - A. Masonry stress = $0.8f'_m$
 - B. Masonry stress acts over a = 0.8c

TMS 402 Chapter 9.3.3 Reinforced Masonry

Reinforcement:

- Size Limitations (9.3.3.1)
 - Maximum bar size is #9
 - Bar diameter ≤1/8 nominal wall thickness (6.1.2.5)
 - Bar diameter ≤¼ least clear dimension of cell (9.3.3.1)
 - Area ≤4% of cell area (8% at splices) (9.3.3.1)
 - Joint reinforcement min. 3/16" (9.3.3.1)
- Shear Reinforcement (6.1.7.1)
 - Bend around edge reinforcement with a 180°hook
 - At wall intersections, bend around edge reinforcement with a 90°hook and extend horizontally into intersecting wall a minimum of development length
- Bars not allowed to be bundled (9.3.3.3)

University of Michigan, TCAUP	Masonry	Slide 7 of 18

TMS 402 Chapter 9.3.3.2 Reinforced Masonry

Minimum and Maximum Requirements

Minimum reinforcement: (9.3.4.2.2.2, 9.3.4.2.2.3)

- Mn ≥ 1.3 x cracking strength
 or As ≥ (4/3)As,req'd
- Modulus or rupture, fr= Table 9.1.9.2

Maximum based on ρ = As/bd

Maximum reinforcement:		Grade 60 steel		
(9.3.3.2)		Clay	CMU	
$\rho_{\max} = \frac{0.8(0.8)f'_m}{f_y} \left(\frac{\varepsilon_m}{\varepsilon_m + \varepsilon_s}\right)$	$ ho_{max}$	0.00565f' _m	0.00476 <i>f</i> ′ _m	
		$0.843 ho_{\it bal}$	$0.815 ho_{\it bal}$	
$\varepsilon_s = 1.5 \varepsilon_y$	$ ho_{max}$ f'_m = 2 ksi	0.01131	0.00952	

 f'_m in ksi

TMS 402 Chapter 9.3 Reinforced Masonry

Partially Grouted Walls

 $b = \text{effective compressive width per bar} = \min\{s, 6t, 72 \text{ in.}\}$ (5.1.2)

t = nominal thickness

As min. (none) As max. (same as beams)

TMS 402 Chapter 9.3 Reinforced Masonry

steel areas for partially grouted walls

Spacing	Steel Area in.²/ft			
(inches)	#3	#4	#5	#6
8	0.16	0.30	0.46	0.66
16	0.082	0.15	0.23	0.33
24	0.055	0.10	0.16	0.22
32	0.041	0.075	0.12	0.16
40	0.033	0.060	0.093	0.13
48	0.028	0.050	0.078	0.11
56	0.024	0.043	0.066	0.094
64	0.021	0.038	0.058	0.082
72	0.018	0.033	0.052	0.073
80	0.016	0.030	0.046	0.066
88	0.015	0.027	0.042	0.060
96	0.014	0.025	0.039	0.055
104	0.013	0.023	0.036	0.051
112	0.012	0.021	0.033	0.047
120	0.011	0.020	0.031	0.044

TMS 402 Chapter 9.3 Reinforced Masonry - example

1. Determine Mu $M_{0} = \frac{w_{0}h^{2}}{8} = \frac{(30 \text{ rsF} \times 1') 12'^{2}}{8} = 540 \text{ FT-LBS}$ $d = \frac{4}{7} = \frac{7.625''}{7} = 3.8125''$

Masonry

Slide 11 of 18

TMS 402 Chapter 9.3 Reinforced Masonry - example

2. Calculate a

TMS 402 Chapter 9.3 Reinforced Masonry - example

- 3. Calculate As required
- 4. Determine As used
- 5. Check p max

$$A_{SREAD} = \frac{0.8 \text{ fm} 2\text{b}}{\text{fg}} = \frac{0.8 (2000)(0.0997)(12)}{60000 \text{ rs1}}$$

$$A_{SREAD} = 0.0319 \frac{\text{im}^2}{/\text{FT}}$$

$$USE = 44.072 \text{ "o.c.} = 0.033 \text{ m}^2/\text{FT}$$

$$\rho = \frac{A_S}{\text{bd}} = \frac{0.033 \text{ m}^2}{12 \text{ (3.8125")}} = 0.00072$$

$$\rho_{m2x} = 0.00952 > 0.00072 \text{ (.0K)}$$

Spacing	Steel Area in.²/ft			
(inches)	#3	#4	#5	#6
8	0.16	0.30	0.46	0.66
16	0.082	0.15	0.23	0.33
24	0.055	0.10	0.16	0.22
32	0.041	0.075	0.12	0.16
40	0.033	0.060	0.093	0.13
48	0.028	0.050	0.078	0.11
56	0.024	0.043	0.066	0.094
64	0.021	0.038	0.058	0.082
72	0.018	0.033	0.052	0.073
80	0.016	0.030	0.046	0.066
88	0.015	0.027	0.042	0.060
96	0.014	0.025	0.039	0.055
104	0.013	0.023	0.036	0.051
112	0.012	0.021	0.033	0.047
120	0.011	0.020	0.031	0.044

TMS 402 Chapter 9.3 Reinforced Masonry - example

7. Recalculate a and As

$$d = d - \sqrt{d^{2} - \frac{2MU}{\phi_{0.8}f_{m}^{i}b}}$$

$$d = 3.61'' \sqrt{3.81^{2} - \frac{2(540)(12)}{0.9(0.8)(2000)(8)}}$$

$$d = 0.1531 \text{ im}$$

$$A_{SREQD} = \frac{0.8f_{m}^{i}bd}{f_{A}} = \frac{0.8(2^{KSI})8''_{I}(0.1531)}{60^{KSI}}$$

$$A_{SREQD} = 0.0326''_{FT}$$

8. Check p max ...

			1 0.15	
Spacing	Steel Area in.²/ft			
(inches)	#3	#4	#5	#6
8	0.16	0.30	0.46	0.66
16	0.082	0.15	0.23	0.33
24	0.055	0.10	0.16	0.22
32	0.041	0.075	0.12	0.16
40	0.033	0.060	0.093	0.13
48	0.028	0.050	0.078	0.11
56	0.024	0.043	0.066	0.094
64	0.021	0.038	0.058	0.082
72	0.018	0.033	0.052	0.073
80	0.016	0.030	0.046	0.066
88	0.015	0.027	0.042	0.060
96	0.014	0.025	0.039	0.055
104	0.013	0.023	0.036	0.051
112	0.012	0.021	0.033	0.047
120	0.011	0.020	0.031	0.044

TMS 402 Chapter 9.3 Reinforced Masonry example

Horizontal spanning masonry between bars:

- Some treat as unreinforced masonry, although • debate as to whether you can mix unreinforced and reinforced masonry.
- There is arching occurring, so not truly a simply supported flexural member between vertical bars.
- Can use joint reinforcement

Wire Size (d_b	<i>A_s</i> (in.²)	Spacing (in.)	ϕM_n (kip-ft/ft)	
	(in.)			8 in. CMU	12 in. CMU
W1.7	0 1/9	0.148 0.017	8	0.921	1.456
(9 gage)) gage) 0.140		16	0.462	0.730
W2.8	0 1 9 7 0 0 2 9	0 0 2 8	8	1.506	2.388
(3/16) 0.18	0.107	0.020	16	0.841	1.198

University of Michigan, TCAUP

Masonry

Slide 17 of 18

TMS 402 Chapter 9.3 Reinforced Masonry

example

Placement tolerances: (3.4.B.11)

- $d \leq 8$ in. ± 1/2 in.
- 8 in. < $d \le 24$ in. ± 1 in.
- d > 24 in. $\pm 1.1/4$ in.
- Along wall: ± 2 in.

8 in. CMU; f'_=2000 psi; Grade 60